
Customizing the REST API

Add custom endpoints to the new REST API by using the existing WorldServer SDK. However, you should
use this only as an entry point into the REST API and delegate the customization logic to other classes.

About this task

You are inside the Spring context, so you can use its full functionality. For example, you can add the
customization logic in a bean that you autowire in RestController. There is no management UI, so you will
have to manage API customizations through REST calls.
Build your customization as a Maven project with Shade Plugin. This facilitates the creation of the
uber .jar packages that will contain the customization and its libraries. The customization must be in a

valid .jar package; this package must contain the customization classes and the libraries that are not
already provided by WorldServer. Also, make sure that the RestController beans are in
the com.sdl.lt.worldserver.customizations subpackage.
To create a new endpoint, you need to create a new RestController. In Spring, you can do this by
annotating the class with @RestController. This instructs the customization process that it needs to
add this class to the Spring context as a RestController bean.

To make sure that your .jar package is as minimalist as possible, set the dependencies that already exist
in WorldServer as provided. For example, wssdk and spring-webmvc are already in WorldServer, so you
should set them as provided. This makes shade-plugin exclude them from the .jar file. Also, you can
use the shade-plugin configuration to include or exclude artifacts.

<dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-webmvc</artifactId>

 <version>4.1.7.RELEASE</version>

 <scope>provided</scope>

</dependency>

If you do not have wssdk or other libraries as Maven dependencies, you can install them in your local
repository. You can do this using mvn install:install-file, and then use it as a regular Maven
dependency.

mvn install:install-file -Dfile=wssdk-server.jar -DgroupId=com.sdl.lt.worldserver
-DartifactId=wssdk -Dversion=1.0 -Dpackaging=jar

Also, you can set its scope to provided, to avoid including it in the .jar package unnecessarily. For
example, wssdk is already in WorldServer, so there is no need to provide it in every customization.
Another option is to use the system scope and reference the library from the disk.

<dependency>

 <groupId>com.sdl.lt.worldserver</groupId>

 <artifactId>wssdk</artifactId>

 <version>1.0</version>

 <scope>system</scope>

 <systemPath>c:\wssdk\wssdk_10.4.4.144\lib\server\wssdk-server.jar</systemPath>

</dependency>

Important: Dependencies with the system scope are not included in the uber .jar package.

https://maven.apache.org/plugins/maven-shade-plugin/examples/includes-excludes.html

Procedure

1. Create a Maven project.

a. Add the wssdk dependency.

b. Add the provided dependencies.

c. Add the dependencies that are not provided.

d. Add the Shade Plugin. You can use the following definition as a reference:

e. <plugin>

f. <groupId>org.apache.maven.plugins</groupId>

g. <artifactId>maven-shade-plugin</artifactId>

h. <version>2.4.2</version>

i. <executions>

j. <execution>

k. <phase>package</phase>

l. <goals>

m. <goal>shade</goal>

n. </goals>

o. <configuration>

p. <artifactSet>

q. <excludes>

r. <exclude>org.springframework:spring-
webmvc:*</exclude>

s. <exclude>log4j:log4j:jar:</exclude>

t. </excludes>

u. </artifactSet>

v. <filters>

w. <filter>

x. <artifact>*:*</artifact>

y. <excludes>

z. <exclude>META-INF/**</exclude>

aa. </excludes>

bb. </filter>

cc. </filters>

dd. </configuration>

ee. </execution>

ff. </executions>

</plugin>

2. Create a RestController bean.

a. Create a class in a package under com.sdl.lt.worldserver.customizations.

b. Annotate it with @RestController.

c. Annotate it with @RequestMapping ("/extensions/<new-endpoint>").

Tip: Every customization mapping has to start with /extensions/.

d. Autowire context: Inject the com.idiominc.wssdk.WSContext in the controller.

e. Create the request handler method. To do so, you need to create a method that calls the
customization logic and add the method request mapping by annotating the method
with @RequestMapping (value = "clients", method = GET, produces =
APPLICATION_JSON_VALUE).

3. Build the project (mvn clean install). This generates the uber .jar: target/<project-

name>- <version>.jar

4. Upload the .jar file into WorldServer. Use any REST client you want. To upload the .jar file, make

a POST request to http://<ws-host>:<ws-port>/ws-

api/v1/customizations/api?token=<ws-token>. The body should be form-data.

5. Test the customization.

6. Optional: Do any of the following:

o See the existing customizations. To do so, make a request to http://<ws-host>:<ws-

port>/ws-api/v1/customizations?token=<ws-token>
o Enable or disable customizations. To do so, make a PATCH request to http://<ws-

host>:<ws-port>/ws-api/v1/customizations?token=<ws-token> changing the
value of isActive to true or false.

o Delete customizations. To do so, make a DELETE request to http://<ws-host>:<ws-

port>/ws-api/v1/customizations/api?token=<ws-

token>&name=<customization-name>. Make sure your Content-Type is
application/json.

Parent topic: The WorldServer REST API

https://sdldocreach01.sdlproducts.com/LiveContent/content/en-US/SDL%20WorldServer%20Developer%20Documentation-v1/GUID-D49A18BE-4E38-46B2-97B9-B64E9A22883C

