
BroadVision� QuickSilver�

File Formats

File Formats

Copyright © 1998-2002 BroadVision, Inc. All rights reserved.
585 Broadway, Redwood City, California 94063 U.S.A.
Printed in the United States of America

This manual and the software described in it are copyrighted.
Under the copyright laws, this manual or the software may not be copied, in whole or in part, without prior written consent of BroadVision,
Inc., or its assignees, except for purposes of internal use by licensed customers of BroadVision, Inc.. This manual and the software
described in it are provided under the terms of a license between BroadVision and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Terms and Conditions Applicable to Federal Governmental End Users. BroadVision licenses
products for ultimate end use by federal government agencies and other federal government customers ("federal government customers")
only under the following conditions. Software and technical data rights in these products include only those rights customarily provided to
end use customers of Software as defined in the BroadVision, Inc. Software Subscription License Agreement and any exhibit thereto. This
customary commercial license in technical data and software is provided in accordance with FAR 12.211 (Technical Data) and 12.212
(Computer Software) and, for Department of Defense purchases, DFAR 252.227−7015 (Technical Data − Commercial Items) and DFAR
227.7202−3 (Rights in Commercial Computer Software or Computer Software Documentation). If a federal government or other public
sector customer has a need for rights not conveyed under these terms, it must negotiate with BroadVision to determine if there are
acceptable terms for transferring such rights, and a mutually acceptable written agreement specifically conveying such rights must be
executed by both parties.

The product described in this manual may be protected by one or more U.S. and International patents. Certain applications of
BroadVision One−To−One® software are covered by U.S. patent 5,710,887.

DISCLAIMER: BroadVision, Inc. makes no representations or warranties with respect to the contents or use of this publication.
BroadVision shall have no liability for lost profits or other incidental or consequential damages even if advised of the possibility of such
damages or for any claim by any third party. Further, BroadVision, Inc. reserves the right to revise this publication and to make changes in
its contents at any time, without obligation to notify any person or entity of such revisions or changes.

TITLE: Title and ownership shall at all times remain with BroadVision (and its suppliers if applicable). Use is subject to a separate license
agreement with BroadVision.

TRADEMARKS: BroadVision® and BroadVision One−To−One are registered trademarks of BroadVision, Inc., in the United States and
the European Community, and are trademarks of BroadVision, Inc., in other countries. The BroadVision logo, InterleafB , Interleaf 5,
Interleaf 6, Interleaf 7, BladeRunner, RDM, WorldView, WorldView Press, and QuickSilver are trademarks of BroadVision, Inc., in the
United States and other countries.

The following are trademarks or registered trademarks of their respective companies or organizations in the United States and other
countries:

Acrobat, the Acrobat logo, Distiller, FrameMaker, and PostScript / Adobe Systems Incorporated
HP / Hewlett−Packard Co.
Java and all Java−based trademarks and logos / Sun Microsystems, Inc.
Microsoft, Microsoft Word, MS−DOS, and Internet Explorer / Microsoft Corp.
Motif, OSF/Motif, and the OSF/1 operating system / Open Software Foundation, Inc.
Netscape, Netscape Navigator, and the Netscape Communications logo / Netscape Communications Corp.
RISC System/6000B / International Business Machines Corp.
Sun, Sun−4, SunOS4, SunOS5, Solaris, and SunWindowsB / Sun Microsystems, Inc.
UNIX / The Open Group
Windows, Windows for Workgroups, Windows NT, Windows 95, Windows 98, and Windows 2000 / Microsoft Corp.
X Window SystemB / Massachusetts Institute of Technology
All other trademarks, service marks, and trade names belong to their respective owners. BroadVision, Inc. disclaims any proprietary
interest in the marks and names of others.

. .

This documentation was prepared using QuickSilver.
. .

I�I

File Formats�iii

File Formats

About this Manual iii.
Conventions Used in this Manual iv.
Changes in Interleaf 7 v.

ASCII Format Basics 1−1.
Overview of Interleaf ASCII Format 1−2.
Declarations, Commands, and Properties 1−3.

Declarations 1−3.
Commands 1−4.
Properties 1−4.
Default Values 1−4.

Required Order of Declarations 1−5.
Syntax for Interleaf ASCII Format 1−7.

General Conventions 1−7.
Quoting Conventions 1−8.
JLoose Matching" 1−9.
Units of Measurement 1−10.
Conventions for Specifying Properties 1−10.

The Interleaf ASCII Loader and ASCII File Type 1−11.
Files Without Markup 1−11.
File Type:IIcons and Extensions 1−12.

Character Mapping 1−13.
ASCII Error Messages 1−13.
Creating and Editing ASCII Format Documents 1−14.

Information Discarded by Interleaf ASCII 1−14.

1.

Contents

Contents

iv�Interleaf 6

I�I

ASCII Format for Text 2−1.
Declarations 2−2.

<!OPS, ...> Declaration 2−2.
<!Page Number Stream, ...> Declaration 2−2.
<!Document, ...> Declaration 2−4.
<!Page, ...> Declaration 2−7.
<!Font Definitions, ...> or <!Fonts, ...> Declaration 2−11.
<!Color Definitions, ...> or <!Colors, ...> Declaration 2−13.
<!Pattern Definitions, ...> or <!Patterns, ... > Declaration 2−15. . . .
<!Revision Tracking, ...> Declaration 2−17.
<!Autonumber Stream, ...> Declaration 2−18.
<!Class Defaults, ...> Declaration 2−19.
<!Class, ...> DeclarationINIDeclaration for Components 2−20.
<!Master Frame, ...> Declaration 2−31.
<!Master Diagramming Object,...> Declaration 2−38.
<!Master Table,...> Declaration 2−38.
<Master Row... > Declaration 2−38.
<!Comment, ...> Declaration 2−38.
<!End Declarations> Declaration 2−38.

Commands 2−39.
<Autonum, ...> CommandINIAutonumbers 2−39.
<Ref, ...> CommandINIReference Tokens 2−40.
<component, ...> Command 2−42.
Inline Components 2−45.
Examples 2−48.
<Table, ...>,<Row, ...>, and <Cell, ...> Commands 2−49.
<Fn> CommandINIFont Change 2−49.
Text Properties 2−50.
</F> CommandINIPrevious Font 2−52.
<FI> CommandINIItalic 2−53.
<FB>CommandINIBold 2−53.
<FBI> CommandINIBold Italic 2−53.
<FJ> CommandINIForce−Justify 2−53.
<Frame, ...> Command 2−54.
<HR> CommandINIHard Return 2−55.
<SR>INISoft Return 2−55.
<!Include, ...> and <!Include Declarations, ...> Commands 2−55. . .
<Index, ...> Command 2−56.
<|, ...>,PPage Break Command 2−57.

2.

Contents

I�I

File Formats�v

<Page Header, ...> and <Page Footer, ...> Commands 2−58.
<SP> CommandINIHard Space 2−59.
<Tab ...> Command 2−59.
Special Characters: the <#xx> Command 2−60.
User−Defined Attributes 2−61.
<Comment ...> Command 2−63.

ASCII Format for Tables 3−1.
Table Declarations and Commands 3−2.

<!Master Table, ...> Declaration 3−2.
<Master Row, ...>Declaration 3−7.
<Table, ...> Command 3−8.
<Row, ...> Command 3−8.
<Cell, ...> Command 3−9.
Sample Tables 3−11.

ASCII Format for Graphics Objects 4−1.
General Markup Rules 4−2.

Object Type and Version 4−3.
Layering 4−4.
Locks 4−4.
Edge and Fill Properties 4−6.
Graphics Error Messages 4−6.
ASCII Lisp Method Storage for Graphic Objects 4−7.

Markup for Specific Objects 4−8.
Lines 4−8.
Groups 4−9.
Polys 4−10.
Ellipses 4−11.
Arcs 4−12.
Splines 4−15.
Text Strings 4−17.
Convert−to−Outline Object 4−18.
Microdocuments 4−19.
Plotter or Vector−List Object 4−21.
Encapsulated PostScript Object 4−23.
OLE Objects 4−25.

Bézier Objects 4−27.
Named Graphics Objects 4−28.
Edit State Objects 4−31.

Charts and Images 4−32.

3.

4.

Contents

vi�Interleaf 6

I�I

ASCII Format for Charts 5−1.
Record Structure 5−2.

Units in ASCII Markup for Charts 5−2.
 ASCII Record Markup for Charts 5−3.

Records for Chart Style Control 5−4.
Data Records 5−9.
Records for Variable Style Control 5−10.
Sample Chart 5−13.

ASCII Format for Image Objects 6−1.
Image Object Markup 6−2.
Color Image Object Markup 6−10.

Format Fields and Values 6−12.
Backing Store Object Types 6−16.

Binary Format for Image Objects 7−1.
Image Object Binary Format 7−2.

Structure of an Interleaf Image File 7−2.
Pasting a Raster File into a Document 7−4.

Color Image Binary Format 7−4.
Structure of Interleaf Image Files 7−5.

Compressed Raster Format 7−8.

The Include Commands 8−1.
Using the Include Commands 8−2.

Using Pathnames 8−2.
Nesting Include Commands 8−2.
Using Templates 8−2.
Assembling a Document 8−6.
Inserting Frames in an ASCII File 8−7.

5.

6.

7.

8.

Contents

I�I

File Formats�vii

Default Values for ASCII Format Documents A−1.
Default Values A−2.

ASCII Format Error Messages B−1.

Hexadecimal Codes C−1.

Filter Writing D−1.
Autonumbers D−1.
Components (<!Class, ...> objects) D−2.
Default Values D−2.
Diagramming Markup D−3.
End Commands D−3.
Fill Property D−3.
Font Tokens and Font Inheritance D−4.
Frames D−5.
Informational Markup D−5.
Input Markup D−6.
Interleaf ASCII Method Storage D−6.
Microdocuments D−6.
Names D−6.
Newlines and Broken Words D−7.
Quotation Procedures D−8.

Index Index−1.

Properties Index−7.

Special Cases Index−12.

A.

B.

C.

D.

I�I

File Formats�iii

This manual describes Interleaf ASCII format for Interleaf 7.
Interleaf ASCII format, or markup, is a language that describes an
Interleaf document.

Interleaf ASCII format and the File Formats manual are often used
to move documents between Interleaf 7 and other applications.
Typically, this involves the use of a filter program to translate
between Interleaf’s ASCII format and a representation native to
some other application. This manual is intended to assist software
professionals in the writing of these filter programs.

Interleaf binary, or fast, format, is another Interleaf format for
describing a document. Unlike ASCII format, Interleaf binary
format is proprietary; programs other than the Interleaf publishing
software cannot easily use it. This manual discusses Interleaf
binary format only in relation to images before they are pasted in
documents.

The chapters in this manual describe

� ASCII format basics

� ASCII format for text

� ASCII format for tables

� ASCII format for graphics objects

� ASCII format for charts

� ASCII format for image objects in a document

� binary format for images not yet pasted in a document

� the Include commands

Interleaf
ASCII Format

Interleaf
Binary Format

Chapters

About this Manual

About this Manual

iv�Interleaf 7

I�I

The appendixes in this manual describe

� the default values for ASCII format

� ASCII format error messages

� hexadecimal codes for markup of special characters

� hints for filter writers

In addition to the main index, there is a Properties Index that lists all
properties that can be declared in Interleaf ASCII format, and a
Special Cases index that lists cases that vary in some way from stan−
dard format declarations or procedures.

This manual gives detailed information about Interleaf ASCII
format, and briefly describes the properties and values that you can
define in ASCII format. For detailed descriptions of these proper−
ties and values, and for information about Interleaf−specific terms
such as Jinline," Jcomponent," and Jframe," refer to the Interleaf 7
online documentation.

Conventions Used in this Manual

In this manual, the conventions for values of properties are:

� x (as in Top Margin = x inches) indicates numbers that can con−
tain decimal fractions.

� n (as in Fn = font name) indicates whole numbers only.

� m (as in Fm = font name) also indicates a whole number, but
indicates in addition that this number must be different from the
one preceding it.

� name (as in Final Output Device = name) indicates that you
must enter a name. For naming guidelines, see Quoting Conven−
tions in this chapter.

� string (as in Page # Prefix = string) indicates that the user can
insert a string or leave the entry blank. Strings, unlike names,
often contain special characters. To determine when it is neces−
sary to enclose a string entry in quotation marks, see Quoting
Conventions in this chapter.

Appendixes

Indexes

Changes in Interleaf 7

I�I

File Formats�v

In examples of ASCII markup throughout the manual, default
values are shown in boldface type like this:

<!Document,
Header Page = On/Off,
Double Sided = Yes/No,
Manual Sheet Feed = Yes/No,
Print Rev Bars = Yes/No,

.

.

...>

Changes in Interleaf 7

If you save a document in Interleaf 7 ASCII format, the markup dif−
fers from previous releases in the following ways:

� The ASCII version number is 8.4. The markup is:

<!OPS, Version = 8.4>

Documents produced in Interleaf 7 can thus be differentiated
from older versions. The ASCII loader issues errors only if it
sees a version number with a whole number step, such as 9.0.

� ASCII format for compressed color images. Changes to com−
presed backing store object markup.

� Color Images. The format is changed so that Interleaf supports
depths of 1 bit/pixel (for line−art images), 8 bits/pixel (for grey−
scale or ‘pseudocolor’ contone images) and 24 bits/pixel (for col−
or images).

I�I

File Formats�1−1

This chapter covers basic concepts of Interleaf ASCII format by
presenting the following:

� overview

� declarations, commands, and properties

� required order of declarations

� syntax for Interleaf ASCII format

� the Interleaf ASCII loader and ASCII file type

� character mapping

� ASCII error messages

� creating and editing ASCII−format documents

ASCII Format Basics

ASCII Format Basics

1−2�Interleaf 7

I�I

Overview of Interleaf ASCII Format

Interleaf ASCII format, or markup, is a language that describes an
Interleaf document. An Interleaf document can contain structuring
elements such as components and frames. These can contain text,
graphics objects, charts, images, and other elements.

An Interleaf ASCII format file typically contains both markup and
ASCII text. The markup specifies formatting information for the
contents of an Interleaf document. This chapter presents a summary
of Interleaf ASCII markup syntax and procedure.

Throughout this manual, reference is made to the Interleaf ASCII
loader and dumper. Loader refers to the subsystem of Interleaf that
reads in, or loads, an ASCII file to the application. Dumper refers
to the subsystem that writes out an Interleaf binary file in Interleaf
ASCII format.

Starting with Release 5.2, components can have Interleaf Lisp
statements attached on output. When Lisp is present in output, it is
expressed using the property syntax, as in the following example:

<component,
 ...

Lisp = ”actual Lisp code”
...

Lisp code must be enclosed between quotes. If the Lisp code itself
contains either a double quotation mark (”) or a backslash (\),
either character must be preceded by a backslash. Lines of output
are kept short in length by outputting a backslash and a newline. If
the Lisp string contains actual newline or tab characters, they will be
preserved as written in output. If there are characters with values
greater than hex 7e, they are output as \xHH,I whereI HH stands for
two hex digits.

Interleaf
ASCII Format

ASCII Loader
and Dumper

ASCII Lisp
Method Storage
for Components

Declarations, Commands, and Properties

I�I

File Formats�1−3

For example, executing the following Interleaf Lisp:

(tell cmpn mid:put-saved-data :foo ”()<>,\”\\ ”)

results in the following markup:

<”para”,
Lisp = ”(tell *load-object* mid:put-data
’ileaf::saved-data \ ’(:foo \”()<>,\\\”\\\\ \”)

)”>

Lisp can also be attached to graphics objects. For more information,
refer to the chapter ASCII Format for Graphics Objects.

Declarations, Commands, and Properties

Interleaf ASCII markup uses two kinds of statements: declarations
and commands.

Declarations

Declarations define the properties of the entire document and the
properties of individual document elements. Declarations must
precede all other content. Each declaration is enclosed by the
symbols <! and >. The following is an example of a partial
declaration for a document:

<!Document,
Header Page = no,
Manual Sheet Feed = yes,
Print Underlines = no,
Underline at Descender = yes,
Default Page Stream Name = page>

The main function of a declaration is to establish master definitions
for the structuring elements of an Interleaf document, such as
components or frames. Individual instances of a master can have
unique features, but they rely on the master declaration for most of
their structuring information. For this reason, markup for a specific
instance should not precede its master declaration.

ASCII Format Basics

1−4�Interleaf 7

I�I

Commands

Commands appear throughout the file to specify format changes
and to indicate the start of a structuring element (such as a
component or a frame) previously defined by a declaration. Each
command is enclosed by the symbols < and >. The following
example shows a command for a para component:

<para,
Top Margin = 1 Inches,
Bottom Margin = 1 Inches,
Left Margin = 0.50 Inches,
Right Margin = 0.50 Inches,
Allow Page Break Within = no>

Properties

Both declarations and commands specify properties and their
values. For a list of all properties and their corresponding
declarations or commands, refer to the Properties Index.

Default Values

If you do not provide a value for a property in an input file,
Interleaf 7 supplies a default value. For a list of all default values,
refer to the appendix Default Values for ASCII Format Documents.
For special cases, see Appendix D, Filter Writing.

The default property values listed in this appendix may not be the
same as the default values that appear when you create a new
document with the Interleaf 7. This is because defaulting priorities
differ in these two areas. In interactive work, defaults provide a
consistent set of properties within a document and across a set of
documents. These user visible defaults can be edited and reflect
individual preferences, an organizational standard, or the
conventions of a country.

The ASCII dumper and loader use defaults to reduce the volume of
markup. Space can be saved by generating markup only when a
property has a value different from the default. For example, most
components do not have Begin New Page = yes, so when a master
component is output, the Begin New Page property is only
mentioned when it is yes.

Required Order of Declarations

I�I

File Formats�1−5

Because the ASCII Loader/Dumper uses defaults this way, the
defaults are kept the same from one release to the next, unless the
change is clearly linked to the version number.

If you intend to write a program to generate ASCII markup, refer to
the ASCII default values for properties in Appendix A, Default
Values for ASCII Format Documents, since they may differ from the
ones you see in Interleaf 7.

Required Order of Declarations

The order in which Interleaf ASCII declarations are assembled for
markup is important, since some declarations use information provided
in earlier declarations. For example, a component containing text
needs information about fonts. Therefore, fonts must be defined before
they can be referred to by any text components. This means the <!Font
Definitions, ...> declaration must precede any <!Class, ...>
declarations for components.

The required order of declarations in an ASCII file is as follows:

� <!OPS, ...> is mandatory when there are no other declarations
in the document, and is strongly recommended when there are
other declarations. If used, it must precede any other
declaration.

� <!Page Number Stream, ...> must precede any other declaration
that makes reference to that named stream. This includes
<!Document,...> .

� <!Document, ...> must follow <!Page Number Stream, ...>.

� <!Font Definitions, ...>. The legality of fonts that you declare
for your document depends on the printer type specified in the
<!Document, ...> declaration. The declarations that follow
depend on the font definitions.

� <!Page, ...>declarations, which are also used in
microdocuments.

� <!Autonumber Stream, ...> declarations must appear before the
<!Class Defaults, ...> and <!Class, ...> declarations.

Note

ASCII Format Basics

1−6�Interleaf 7

I�I

� <!Color Definitions, ...> and <!Pattern Definitions, ...>
 may be omitted when only the default color and pattern choices
supplied by Interleaf are used. Otherwise, they must follow the
<!Font Definitions, ...> declaration and precede any declaration
that refers to color or pattern, such as <!Master Diagramming
Object, ...> or <!Master Frame, ...>.

� <!Revision Tracking, ...>, if used, must precede <!Class, ...>
declarations.

� <!Class Defaults, ...>, if used, must appear after the
<!Font Definitions, ...> declaration and before the <!Class, ...>
declarations. Class defaults are a special case. See the
<!Class Defaults, ...> Declaration in the chapter ASCII Format
for Text for more information.

� <!Class, ...>, if used, must appear after the
<!Font Definitions, ...> and <!Class Defaults, ...> declarations.
This declaration is used to declare all component types.

� <!Master Frame, ...> declarations must appear after the
<!Class Defaults, ...> and <!Class, ...> declarations, since a
master frame might contain components.

� <!Master Diagramming Object, ...> declarations must appear
after <!Master Frame, ...> declarations, if any.

� <!Master Table, ...> declarations must appear after the
<!Master Frame, ...> declarations, if any.

� <!End Declarations> must follow all other declarations and
must precede all commands.

Syntax for Interleaf ASCII Format

I�I

File Formats�1−7

Syntax for Interleaf ASCII Format

General Conventions

Within the markup brackets, there must be a comma after each
command word that is followed by pertinent information. Use a
comma to separate one property and value from the next. For
example:

<!Class, personal,
Bottom Margin = 0.15 inches,
Line Spacing = 1 lines,
Font = F6>

Comments may be included. To indicate a comment within markup,
insert two dashes (−−) on either side of the comment text. For
example:

<!Class, personal, --use this only for private memos--
Bottom Margin = 1.15 inches,
Line Spacing = 2 lines,
Font = F6>

There must be no spaces between the two dashes, nor should there
be special characters, such as angle brackets, in the comment text.

Blank lines, tabs, and spaces before the first component (for
example, between the declarations) are ignored. If a character other
than these is seen, a default component is created for the character
and any that follow.

You cannot place comments within diagramming data.

Within the markup brackets (<I>) you may use tabs, blanks, and
newlines, following the rules in Quoting Conventions in this chapter.
Interleaf 7 does not save these tabs, blanks, and newlines if you load
the document and then resave it in ASCII on your desktop.

A right angle bracket (>) alone, with no preceding <, is considered
a text character. To use a left angle bracket as a text character rather
than a markup indicator, you must double it (<<). For example, if
you want to see the expression 2<10 in your document the
corresponding markup must be 2<<10.

Note

ASCII Format Basics

1−8�Interleaf 7

I�I

Quoting Conventions

There is no harm in using quotation marks even when they are not
necessary. When you are unsure whether to use quotation marks in
declarations or commands, use them.

If a name contains any of the following characters, enclose the name
in quotation marks:

� spaces (including thin, hairline, em, and en spaces)

� commas

� minus signs

� en dashes

� em dashes

� small bullets

� =Y<Y >Y @Y ”Y’Y !Y #Y |Y {Y }Y ~Y \Y ^Y ‘Y £Y §Y JY ¢

� special charactersNthat is, any character with a hex value less
than hex 20 or more than hex 7e, including Ä, Ö, ê, and similar
accented characters.

� Use the <#xx> convention for special characters in quoted
names. The <#xx> convention is described in the chapter
ASCII Format for Text.

When you use the characters listed above inside any of the following
entries, you must enclose the entire entry in quotation marks:

� names of components, frames, autonumber streams, or printers

� page numbers with prefixes

� autonumbers with prefixes or suffixes

� index headings

� filenames

Syntax for Interleaf ASCII Format

I�I

File Formats�1−9

If a component name contains strings that are the same as
command names or font names, such as tab, F0, or HR, you must
enclose the entire name in quotation marks. For example, if you
want to call a component table, you must show its name like this:
<”table”>. Otherwise, the name will be interpreted as the
command that creates a table in the document. See Appendix D,
Filter Writing, for the list of reserved names.

To preserve quotation marks, enclose quoted material in outer
quotation marks. For example, if you want a component name to be
Part ”A” you must enter the following:

”Part ””A”””

You can use any combination of characters to name components.
However, unless you have a real need for special characters, you
may find it easier to deal with the names in ASCII markup if you
use only alphanumeric characters.

+Loose Matching"

When you open a document on the desktop, if a name indicated in a
component command does not exactly match a class, Interleaf 7
tries to make a loose match by allowing upper− and lowercase letters
to match and allowing for extra or missing blanks. For example,
Interleaf 7 matches Para and para. This loose matching allows
for recuperation from inconsistencies and typing errors when you
specify component names.

Note

Note

ASCII Format Basics

1−10�Interleaf 7

I�I

Units of Measurement

On input, when you mark up an ASCII file, you can use any of the
following units of measurement:

� mm

� cm

� in (or inch, inches)

� pica (or picas)

� point (or points)

� cicero (or ciceros)

� didot (or didots)

In addition, the unit char (character) can be used in certain places.
A char is defined as the size of the space character in the default
font.

In this manual, inches are used as the basic unit of measurement.
You may substitute any of the units listed above.

Interleaf 7 permits measurements of up to seven decimal places,
with automatic rounding.

When documents are saved in ASCII, either inches or millimeters
may be used. This is controlled by the value of the Lisp variable
:ascii-units. This variable can be set on the Units sheet of the
Document Properties dialog box, or with the Lisp command:

(tell document−name mid:set-props :ascii-units)

Conventions for Specifying Properties

Property specifications in Interleaf ASCII markup may be declared
as a specific numeric value, as a name or string, or as a Boolean
value (i.e., true or false). For Boolean values, the following terms
may be used interchangeably:

� yes, true, and on

� no, false, and off

The Interleaf ASCII Loader and ASCII File Type

I�I

File Formats�1−11

The Interleaf ASCII Loader and ASCII File Type

The Interleaf ASCII loader treats files without markup and files in
Interleaf ASCII format differently. This section describes those
differences.

Files Without Markup

Interleaf 7 can read and interpret ASCII files that have not been
marked up with the conventions this manual describes. If you read
in a file that does not start with the characters <!, the following
occurs:

� The default values established for Interleaf 7 automatically
apply. These are described in detail in Appendix A, Default
Values for ASCII Format Documents.

� For each blank line encountered in the input text, Interleaf 7
inserts a new para component.

� Interleaf 7 places a hard return at the end of each line of input.

� A default font is used, determined by the setting of
(ld-set-vars font-keyword ...) and font system settings. This
can be set in the Text Properties dialog box or in Lisp.

� A default dictionary is used, determined by the setting of
(sh-set-vars dictionary-keyword ...). This can be set in the
Text Properties dialog box or in Lisp.

The ASCII loader uses a character translation table when loading
ASCII files with no markup. The table converts a system’s native or
national character set into the Interleaf character set.

Newlines are treated as hard returns. Two newlines in a row
(one blank line) start another instance of the prior component (the
default is para). There must be no spaces or tabs on the blank line.

Multiple blank lines in a row are treated as one blank line.

Character
Mapping

Newlines

Blank Lines

ASCII Format Basics

1−12�Interleaf 7

I�I

File Type:5Icons and Extensions

The type of icon Interleaf 7 uses to represent a file on the desktop
depends on how the file is named. Any file with the extension .doc
appears as a document icon, while a file without an extension
appears as a computer paper icon. Generally, document icons
represent Interleaf 7 files and computer paper icons represent
ASCII files on the desktop.

Interleaf 7 reserves the following filename extensions for internal
use. Do not use these as extensions in filenames for files intended to
be treated as documents:

� .drw Drawer

� .fdr Folder

� .cab Cabinet

� .sty Catalog

� .img Image

� .dgm Diagram

� .boo Book

� .lsp Lisp

� .lo Lisp (compiled)

� .fas Lisp (compiled fast format)

� .clp Clipboard

� .pl Printerleaf

� .ter Terminal

� .plt Plot

� .scn Scan

� .pal Palette

� .dir Directory

� .eps Encapsulated Postscript

� .cht Chart

� .dct Dictionary

� .mas Binder

ASCII Error Messages

I�I

File Formats�1−13

Character Mapping

Interleaf 7 uses an extension of the ISO Latin/1 character set for
character mapping. Upon loading, the character translation table
first determines if any of the first four characters is illegal. The null
character is always illegal. If the file is legal, mapping proceeds.

It may be necessary to adjust the character map table to
accommodate differences in character set of a platform specific
nature. The character map table is located in the file char.map in the
data directory. You can edit a local copy of the system char.map file
and create your own translation files. For example, you can map the
left square bracket (I[I) to hex code c4 (the letter A with an umlaut)
by adding the following line to your char.map file:

|[|\xc4|

On a Digital workstation, for example, you might use the character
translation table to map the few characters that do not match the
ISO Latin/1 character set used by Interleaf 7. You can also use the
table to map a file written in a native 7−bit character set, or to map
from a raw IBM PC file.

If no char.map file exists, no mapping takes place. The loader
assumes the characters are in the ISO Latin/1 encoding.

ASCII Error Messages

Interleaf 7 includes a Lisp−driven ASCII loader message function.
This function tracks the loading of ASCII text and creates a message
box detailing any irregularities in the conversion. Information is
kept in the message box and may be printed or filed as an ASCII
document. For a full description of error warnings, seeAppendix A,
ASCII Format Error Messages.

ASCII Format Basics

1−14�Interleaf 7

I�I

Creating and Editing ASCII Format Documents

There are several ways to create an Interleaf ASCII format
document.

� Open an Interleaf 7 document and select ASCII on the Save

dialog box on the File menu.

� Use an Interleaf filter or your own custom filter to convert a
non−Interleaf file into Interleaf ASCII format.

� Use a text editor to create a document and manually mark it up
with Interleaf ASCII format declarations and commands.

� With a text editor, mark up just the body of the document with
Interleaf ASCII format commands, and use the <!Include
Declarations, ...> command to supply the basic structure of the
document. For more information about the <!Include
Declarations, ...>, refer to the chapter The Include Commands.

Information Discarded by Interleaf ASCII

Certain information is not saved when Interleaf binary (JFast")
documents are resaved in Interleaf ASCII format. This includes

� discretionary hyphens inserted by the user; elimination of these
hyphens might change line endings and, less frequently,
pagination

� Jstate" information about such things as text caret position and
display of frame anchors and hard returns; this has no effect on
the content of the document

� in rare cases, a property that violates allowable parameters will
be changed; for example, a margin that specifies a negative
width column

Documents with frozen compositionNthat is, documents with the
Composition Freeze property set to Yes on the Custom Page
property sheetNcannot be saved in ASCII format.

I�I

File Formats�2−1

This chapter describes the Interleaf ASCII format for text. Interleaf
ASCII format, or markup, consists of declarations and commands;
both declarations and commands describe properties. This chapter
describes the properties for each declaration and command.

The order of commands and declarations in this chapter
corresponds to the internal structure of an Interleaf document. In
addition, default values for markup are indicated in boldface type.

For more information about property defaults, refer to Appendix A,
Default Values for ASCII Format Documents. For special cases, refer
to Appendix D, Filter Writing.

Starting with Release 5.2, components and graphics objects can have
Interleaf Lisp statements attached upon output. Although method
storage is not fully supported, some changes will affect output.
Changes affecting text are described in <!Class, ...> DeclarationAB
Declaration for Components in this chapter.

Note

ASCII Format for Text

ASCII Format for Text

2−2�Interleaf 7

I�I

Declarations

The order in which Interleaf ASCII declarations are assembled for
markup is important. For details, refer to Required Order of
Declarations in the chapter ASCII Format Basics.

<!OPS, ...> Declaration

Interleaf strongly recommends that you use the<!OPS, ...>
declaration as the first statement in your file. This guarantees the
proper defaults are installed. If Version is not specified, the latest
version is assumed.

<!OPS, Version = n.n>

For the current release of Interleaf, the Version number is 8.2.

To create a metric A4 document with the default values listed below,
include the specification Style = Metric inside the <!OPS, ...>
declaration.

The Style = Metric specification automatically generates these
values under the <!Page, ...> declaration:

Top Margin = 25 MM,
Bottom Margin = 28 MM,
Left Margin = 35 MM,
Right Margin = 35 MM,
Inner Margin = 25 MM,
Outer Margin = 25 MM,
Page Width = 210 MM,
Page Height = 297 MM,

The Style = Metric specification also generates the following
<!Class, ...> declaration component value:

Bottom Margin = 3.5 MM

<!Page Number Stream, ...> Declaration

This declaration permits simultaneous tracking of numbering
sequences, such as pages within sections and sections within books.
Different page streams can be created for a single document and
can vary with respect to style, prefix, and starting number.

Metric option

Declarations

I�I

File Formats�2−3

A−page numbering is controlled through this declaration, not
through the <!Document, ...> declaration as in some older releases.

The following example shows the properties that are declared under
<!Page Number Stream, ...>:

<!Page Number Stream,
Name = string,
Starting Page # = n,
Page # Prefix = string,
Page # Prefix Two = string,
Page # Style = Arabic, Lower Case Roman, Upper Case

Roman, Upper Case Alpha, Lower Case Alpha
A-Page # Style = Arabic, Lower Case Roman, Upper

Case Roman, Upper Case Alpha, Lower Case Alpha,
A-Page # Prefix = string,
Maximum Page # = n,
Prefix Stream = string,
Begin with = odd, even, any

If no page stream information is specified, a default Page Stream
Name is generated by the ASCII loader. The default specification
is:

Name = page

If a name is specified for the page stream, it may not exceed 19
characters in length.

The Page # Prefix property determines a prefix string, such as Page,
to precede the page number on the page. If Page # Prefix Two is
used, it creates a second string that appears after the first, preceding
the number.

With the Page # Style property, you can specify a variety of styles for
the page number: Arabic, Lowercase Roman, Uppercase Roman,
Lowercase Alpha, or Uppercase Alpha.

A−Page # Style property specifies the style in which A−page
information appears. The options are identical to those for the Page
Style.

A−Page # Prefix property determines a prefix string, which occurs on
each A−Page. This name may not exceed nine characters in length.

Note

ASCII Format for Text

2−4�Interleaf 7

I�I

Maximum Page # specifies the page number of the document after
which A−pages are added. If Maximum Page # is set to the value of
5, every page after 5 is numbered 5a, 5b, 5c, and so on.

Prefix Stream lists the name of the page prefix autonumber stream.
For more information about autonumber streams, refer to
<!Autonumber Stream, ...> Declaration in this chapter.

<!Document, ...> Declaration

The markup for the <!Document, ...> declaration is as follows:

<!Document,
Header Page = Yes/No,
Double Sided = Yes/No,
Manual Sheet Feed = Yes/No,
Print Rev Bars = Yes/No,
Print Strikes = Yes/No,
Print Underlines = Yes/No,
Print Deletion Marks = Yes/No,
Underline at Descender = Yes/No,
Final Output Device = string,
Default Printer = string,
Orientation Inverted = Yes/No,
Measurement Unit = inches/picas/points/ciceros/MM/

picas:points/ciceros:didots,
Line Spacing Unit = inches/picas/points/ciceros/MM

didots/picas:points/ciceros:didots,
ASCII Unit = inches/MM,
Font Unit = points/didots/MM,
Measurement Precision = n units, [2]
Float Precision = n units, [2]
Points Precision = n units, [1]
Spot Color Separation = Off/Screened/Solid,
Component Bar Width = x inches, [.906]
Zoom = x [1],
Facing Pages = Yes/No,
Default Page Stream Name = page [or default name]>

The Header Page property determines whether a header page prints
at the front of the document. The header page prints such
information as the name of the user printing the document, and the
time and date of printing.

The Double Sided property determines whether the document prints
on one side of the paper or on both sides.

Header Page

Double Sided

Declarations

I�I

File Formats�2−5

The Manual Sheet Feed property determines whether the paper is to
be fed into the printer automatically or manually.

The Print Rev Bars property determines whether displayed revision
bars are printed.

The Print Strikes property determines whether displayed
strikethrough lines are printed.

The Print Underlines property determines whether displayed
underlines are printed.

The Underline at Descender property determines whether underlines
are drawn at the descender or at the baseline.

The Print Deletion Marks property determines whether marks
indicating deleted material are printed. These marks are records of
deletion that are kept when Revision Control has been activated in
a document.

The Final Output Device property determines the type of output
device to which your document is sent; you specify a device type
such as cx or ps.

The Default Printer property determines the specific device to which
your document is sent; you specify a device such as nearest device,
or the actual name of the device.

If set to Yes, the Orientation Inverted property reverses the displayed
page orientation for printing. For example, a page displayed as a
portrait page prints as a landscape page when Orientation Inverted is
set to Yes.

The Measurement Unit property determines the display unit for
numerical values in most dialog box fields. For example, if the value
for Measurement Unit is picas, the system displays numerical values
in picas.

The spacing between lines of text can be set in any of the
measurement units shown in the markup example.

Manual
Sheet Feed

Print Rev Bars

Print Strikes

Underline

Print Deletion
Marks

Final Output
Device

Default Printer

Orientation
Inverted

Measurement
Unit

Line Spacing Unit

ASCII Format for Text

2−6�Interleaf 7

I�I

The ASCII Unit property affects ASCII output. If MM is declared,
all output is metric. If you declare inches, they are the unit. No
other units are supported.

Fonts may be specified in any of the units of measurement shown in
the markup example.

The Zoom property determines the degree of magnification seen by
the user on the screen. Settings for Zoom range from .25 (smallest
possible) to 16 (largest possible).

If Facing Pages is declared, the document opens showing left and
right pages opposite each other. The amount visible for each page
depends on the setting for Zoom.

The Spot Color Separation property determines how pages are
printed for color separation. A value of Off prints all color on a
single page of paper. A value of Solid prints each color (including
different percentages of the same color) on a separate page. A value
of Screened is the same as Solid except that different percentages of
the same colors print on the same page.

The default width of the component bar is .906 inches. In adjusting
component bar width, do not declare too narrow a width. This
truncates component names on the screen.

The default name of a page stream is always declared under the
<!Document, ...> declaration.

All A−page declarations for prefix are now handled in the
<!Page Number Stream, ...> Declaration. The procedure used varies
from some releases.

ASCII Unit

Font Unit

Zoom

Facing Pages

Spot Color
Separation

Component
Bar Width

Default Page
Stream Name

Note

Declarations

I�I

File Formats�2−7

<!Page, ...> Declaration

The properties and values for the <!Page, ...> declaration reflect
most of the selections on the Page Properties dialog box.

The markup for the <!Page, ...> declaration is as follows:

<!Page,
Columns = n, [1]
Gutter = x inches,
Height = x inches, [11]
Width = x inches, [8.5]
Top Margin = x inches, [1]
Bottom Margin = x inches, [1.1]
Left Margin = x inches, [1.4]
Right Margin = x inches, [1.4]
Inner Margin = x inches, [1]
Outer Margin = x inches, [1]
Margins = Left/Right|Inner/Outer,
*Balance Columns = On/Off,
Vert. Just. = On/Off,
Margin Stretch = n, [200%]
Margin Shrink = n, [50%]
*Frame Margin Stretch = n, [10%]
Feathering = On/Off,
Max. Feathering = n, [8%]
*Depth At Page Break = n, [95%]
*Depth No Page Break = n, [90%]
*First Page = Left/Right,
*Bleed = Yes/No,
Hyphenation = On/Off,
Consecutive Hyphens = Any/1/2/3/4,
*Allow Break After Hyphen = Yes/No,
Revision Bar Placement = Left/Right/Automatic,
*Turned Pages = 0/90/270,
*Frozen Number Streams = Yes/No
Vertical Margins = Add/Maximum/Bottom/Top
vertical text = Yes/No
Baseline to Baseline = Yes/No>

In this markup, items marked with an asterisk (*) are not allowed in
a <!Page, ...> declaration for a microdocument.

ASCII Format for Text

2−8�Interleaf 7

I�I

The Height and Width properties determine page size. When width
is output for microdocuments whose size is computed relative to the
page or contents, it is for information only and is recomputed when
the document is loaded. When metric defaults are in use some of
these defaults are different. See Appendix A, Default Values for
ASCII Format Documents.

Together, page and component margins must allow at least 0.5 inch
of space, horizontally and vertically, for text per column, except in
microdocuments.

The Columns property determines the number of columns on the
page.

The Gutter property determines the amount of white space between
columns in a multicolumn document. You can specify any positive
value for the Gutter property.

The Balance Columns property determines whether Interleaf 7
balances columns on all pages of a document. When Balance
Columns is On, the software tries to match column depth as closely
as possible on all pages using vertical justification. When Balance
Columns is Off, text must reach the bottom margin before it moves
into the next column on the last page of the document.

Vert. Just., Margin Stretch, Margin Shrink, Frame Margin Stretch,
Feathering, Max. Feathering, Vert. Just. Pages, Depth At Page Break,
and Depth No Page Break are vertical justification properties.
Vertical justification adjusts the vertical spacing in a document by
expanding or compressing the white space between components,
lines, and frames.

The default setting for Vert. Just. is On. If you do not want
Interleaf 7 to adjust vertical spacing at all, the value for the Vert.
Just. property is Off.

The values for Margin Stretch, Margin Shrink, Frame Margin Stretch,
Max. Feathering, Depth At Page Break, and Depth No Page Break are
percentages.

Margin Stretch, Margin Shrink, Frame Margin Stretch, Feathering, and
Max. Feathering determine how much Interleaf 7 can stretch and
shrink white space to achieve column and page justification.

Height
and Width

Margins

Columns

Gutter

Balance Columns

Vertical
Justification

Declarations

I�I

File Formats�2−9

To achieve column justification, set at least some of these options to
On and make sure Vert. Just. is On. To achieve page justification,
you must also turn on the Vert. Just. Pages option. The settings for all
options are effective only when Vert. Just. is On.

The default value for Margin Stretch is 200%. With this setting,
Interleaf 7 stretches the margins between components up to 200%
to achieve vertical justification. You can set Margin Stretch from 0%
(off) to 400%.

The default value for Margin Shrink is 50%. With this setting, the
software compresses the spaces between components by as much as
half to achieve vertical justification. You can enter a setting of 0% to
100%.

The default value for Frame Margin Stretch is 10%. This means
Interleaf 7 can increase the space above and below frames by as
much as 10% of the height of the frame to achieve vertical
justification. You can set Frame Margin Stretch from 0% to 100%.

The Max. Feathering property determines the maximum amount of
space the software adds between lines to achieve vertical
justification. The default value for Max Feathering is 8% when
Feathering is On. You can change this value to any positive
percentage.

When Vert. Just. Pages is On, you can specify how full a page must be
before it is vertically justified.

The default setting for Depth At Page Break is 95%. If you want
Interleaf 7 to try to justify the contents when the page is less than 95
percent full, change the setting to a lower percentage.

The default setting for Depth No Page Break is 90%. You can
increase or decrease this setting.

If the Bleed property is set to Yes, the margins of header and footer
frames expand to the full width of the page.

The Hyphenation property determines whether hyphenation is on or
off for the entire document. Hyphenation must be On for the other
hyphenation properties to be in effect.

The Consecutive Hyphens property determines how many
consecutive lines can end with a hyphenated word.

Bleed

Hyphenation

ASCII Format for Text

2−10�Interleaf 7

I�I

The Allow Break After Hyphen property determines whether you can
break a page at a hyphenated word.

Setting Allow Break After Hyphen to No is not fully supported.

The Revision Bar Placement property determines where Interleaf 7
places revision bars. The default is Left, which places revision bars
in the left margin of the page. Right places revision bars in the right
margin of the page.

Specifying Automatic as the value for Revision Bar Placement
produces the following results:

� Single−sided, single−column layouts continue to have revision
bars on the left.

� Double−sided, single−column layouts have revision bars on the
outside of the page (on the right for the right−hand page and on
the left for the left−hand page).

� Single− and double−sided, two−column layouts have revision bars
on the outside of each column (on the right for the right column
and on the left for the left column).

For more information about revision bars and revision tracking,
refer to <!Revision Tracking, ...> Declaration in this chapter.

The Turned Pages property rotates the contents of a page between
headers and footers; header and footer information keeps its
original orientation unless you also turn the headers and footers.

To turn a page clockwise, declare the value of the Turned Pages
property to be 90; to turn a page counterclockwise, declare the value
of the Turned Pages property to be 270.

Pages rotated clockwise have the header on the right margin of the
page and the footer on the left margin of the page; pages rotated
counterclockwise have the header on the left and the footer on the
right.

You declare the header and footer rotation as clockwise or
counterclockwise by specifying 90 or 270, respectively, for the
Rotation property in the <Page Header> and <Page Footer>
commands.

Note

Revision Bar
Placement

Turned Pages

Declarations

I�I

File Formats�2−11

The Vertical Margins property determines the way distance between
two components is calculated. If Top is selected, the top margin of
the lower component determines the distance between the two.
With Bottom, this distance is determined by the bottom margin of
the upper component. The default is Add, which adds the top and
bottom margins and applies this distance between any two
components. If Maximum is selected, the larger of the two (top and
bottom) is the distance between components.

When Baseline to Baseline is set to Yes, spacing between
components is determined as the distance from the baseline of the
last line of the top component to the baseline of the first line of the
next component.

If the Frozen Number Streams property is set to Yes, the values of
autonumber tokens and properties and the properties of
autonumber streams do not change when tokens are added to or
removed from the stream.

You cannot change the properties of any autonumber streamf when
it is frozen. This restriction is new with Interleaf 5.4J and
Interleaf 7.

<!Font Definitions, ...> or <!Fonts, ...> Declaration

The basic form of the font declaration is <!Font Definitions, ...
followed by a list of the fonts used in the document.

<!Font Definitions,
Fn = font name,
Fm = font name,
...>

In markup, <!Font Definitions, ...> and <!Fonts, ...> are
synonymous. Throughout the rest of the text portion of the marked
up file, <Fn> appears as a concise reference to the font defined in
the <!Font Definitions, ...> declaration. Refer to the chapter ASCII
Markup for Graphics Objects for font conventions inside graphics
objects.

You can specify font names, sizes, and faces in flexible order. Case
is not considered. For example, Times 10 Bold and times bold 10

are equivalent.

Vertical Margins

Baseline
to Baseline

Frozen
Number Streams

Note

ASCII Format for Text

2−12�Interleaf 7

I�I

Font names are not enclosed in quotes even if they contain spaces.
For example, you can have New York 10, but not ”New York” 10.
Font names may only contain standard alphanumeric characters;
special characters and symbols are not permitted.

An example of a simple font declaration is

<!Font Definitions,
 F2 = Times 10,
 F3 = Times 10 Italic>

For files that have been marked up for use with Interleaf, the ASCII
loader attempts the closest match if the font you specify is not
available. The presence in a document of font definitions for fonts
not used in the document has no effect on the document.

Font size is in points and may be declared for input to one decimal
place between the sizes 2 and 200. The following declarations are
examples of legal font sizes:

� F3 = Thames 13.7,

� F4 = Courier 15.0,

� F16 = Thames 28.3,

� F17 = Courier 32.5,

� F23 = Thames 110.3,

When you zoom a document, a larger or smaller font must be
loaded to display the document. If you save a zoomed document in
ASCII markup, the font size of the zoomed font is recorded in the
file. A font you declared to be Courier 15 might appear as Courier
15.7. When the zoom is reset to 100%, the original value for font
size is restored.

Font numbers are arbitrarily assigned place−holders for the fonts
used in the document. A different version of the software may have
a font table that is larger or smaller, so font F4 may not Courier 15
in an ASCII format document dumped in that environment. A filter
should parse the full font declaration, not depend on font numbers.

Note

Declarations

I�I

File Formats�2−13

<!Color Definitions, ...> or <!Colors, ...> Declaration

The <!Color Definitions, ...> or <!Colors, ...> declaration defines
the set of colors the document can use. This declaration associates
each color with a unique code number. The code numbers refer to
colors in the document markup. Code numbers can range from 0 to
255. C0 is usually white. In markup, <!Color Definitions, ...> and
<!Colors, ...> are synonymous.

The <!Colors, ...> declaration usually follows the font declaration
in the markup for a document, although it can appear anywhere
before the first instance of a color in the document. There should be
only one <!Colors, ...> declaration in a document.

Every document has a color palette. If no <!Colors, ...> declaration
appears in a document, the default color palette is used. When a
document with the default color palette is saved, the color palette
declaration is omitted from the output ASCII markup.

When you create colors interactively, definitions for these colors are
dumped in ASCII and added to the <!Colors, ...> declaration.

The generic format for the color declaration is:

<!Colors,
Cn = cyan, magenta, yellow, black
Cm = cyan, magenta, yellow, black
...>

The following is the default <Colors, ...> declaration (all the values
are shades of gray):

<!Color Definitions,
C0 = 0, 0, 0, 0,
C1 = 0, 0, 0, 3.125,
C2 = 0, 0, 0, 6.25,
C3 = 0, 0, 0, 12.5,
C4 = 0, 0, 0, 25,
C5 = 0, 0, 0, 50.001,
C6 = 0, 0, 0, 75.001,
C7 = 0, 0, 0, 100>

ASCII Format for Text

2−14�Interleaf 7

I�I

The C preceding the code number can be either uppercase or
lowercase. If the letter is uppercase, its corresponding color is
displayed on the color popup menus. If the letter is lowercase, its
color is not displayed on the color popup menus, but objects in the
document can still use this color. An example of this markup
follows. The color C8 or c8 was created using the color palette and
has the following markup:

C8 = 50.277, 24.999, 69.999, 12.776

or

c8 = 50.277, 24.999, 69.999, 12.776

The identifying numbers that follow the letter C correspond to the
numbers for the default colors on the popup menus. The numbers
do not appear on the popup menus, but you can see the default
colors by looking at the Props Fill Color submenu for a default
document. Figure 2−1 shows the default color numbers and the
colors they produce within Interleaf 7.

 0

 1

 2

 3

 4

 5

 6

 7

 F i g u r e 2 − 1 . D e f a u l t c o l o r s a n d v a l u e s .

The values for each color in the <!Colors, ...> declaration are
percentages of cyan (C), magenta (M), yellow (Y), and black (B).
Each color is defined in terms of percentages of these primary
colors. These percentages are represented by floating−point
numbers from 0 to 100. For non−color (black−and−white) markup, all
relevant color information can be placed in the fourth column. The
columns corresponding to C, M, and Y must each be given the value
of zero in this case (as shown in the example markup).

Declarations

I�I

File Formats�2−15

<!Pattern Definitions, ...> or <!Patterns, ... > Declaration

The <!Pattern Definitions, ...> or <!Patterns, ...> declaration
defines the set of patterns that can be used by the document and
associates each pattern with a unique code number. The code
numbers are used when referring to patterns in the document
markup. Code numbers can range from 0 to 255. In markup,
<!Pattern Definitions, ...> and <!Patterns, ...> are synonymous.

The <!Patterns, ...> declaration usually follows the <!Fonts, ...>
and <!Colors, ...> declarations in the markup for a document,
although it can appear anywhere before the first instance of a
pattern in the document. There should be only one <!Patterns, ...>
declaration in a document.

The generic format for the <!Patterns, ...> declaration is:

<!Pattern Definitions,
P0 = bitmap,
P1 = bitmap,
...>

The bitmap in a pattern definition is a string of hexadecimal digits
that represent the bits in the pattern. The first four digits represent
the 16 pixels in the first scan line of the pattern. The most
significant bit corresponds to the left−most pixel. A bit value of 1
indicates that the corresponding pixel is part of the pattern and is
colored. A bit value of 0 indicates that the pixel is white. The next
four digits represent the next scan line, and so on. There are 16 scan
lines per pattern.

When you save a document with the default pattern palette, the
pattern declaration is omitted from the output ASCII markup. The
following is the default pattern definition:

ASCII Format for Text

2−16�Interleaf 7

I�I

<!Pattern Definitions,

P0 = fdfd0000dfdfdfdfdfdf0000fdfdfdfdfdfd0000dfdfdfdfdfdf0000fdfdfdfd,

P1 = 060628286e6e8282ecec2828c0c08282060628286e6e8282ecec2828c0c08282,

P2 = 82820606080828286e6e88888080e0e082820606080828286e6e88888080e0e0,

P3 = 0c0c0c0c0c0c0c0cfcfcfcfc000000000c0c0c0c0c0c0c0cfcfcfcfc00000000,

P4 = 08080c0c0c0c1c1cfcfc78780000000008080c0c0c0c1c1cfcfc787800000000,

P5 = ff,

P6 = c0c06060303018180c0c060603038181c0c06060303018180c0c060603038181,

P7 = 8181030306060c0c181830306060c0c08181030306060c0c181830306060c0c0,

P8 = ffffffffffffffff0000000000000000ffffffffffffffff0000000000000000,

P9 = f0,

P10 = f0f078783c3c1e1e0f0f8787c3c3e1e1f0f078783c3c1e1e0f0f8787c3c3e1e1,

P11 = 0f0f1e1e3c3c7878f0f0e1e1c3c387870f0f1e1e3c3c7878f0f0e1e1c3c38787>

The pattern definition defines the pattern at screen resolution
(75 dots per inch). When the pattern is printed, it is automatically
scaled to the resolution of the printer (for example, 300 dpi for most
laser printers).

Figure 2−2 shows the default patterns and the pattern numbers they
produce. You can see the default patterns by looking at the Props
Fill Pattern submenu for a default document. The number values do
not appear on the popup menus.

ÂÂÂ
ÂÂÂ
ÄÄÄ
ÄÄÄ
ÀÀÀ
ÀÀÀ

ÅÅÅ
ÅÅÅ

ÇÇÇ
ÇÇÇ

ÈÈÈÈ
ÈÈÈÈ
ÍÍÍÍ
ÍÍÍÍ

ËËËË
ËËËË

ÉÉÉ
ÉÉÉ

ÊÊÊÊ
ÊÊÊÊ

 6

 0

 1

 2

 3

 4

 5

 7

 8

 9

 1 0

 1 1

ÁÁÁ
ÁÁÁ

 F i g u r e 2 − 2 . D e f a u l t p a t t e r n s a n d v a l u e s .

Declarations

I�I

File Formats�2−17

<!Revision Tracking, ...> Declaration

Revision tracking lets you create, view, and manage different
versions of the same document. This feature supports both parallel
and sequential editing and can record additions or deletions to
material contained in components, named graphics objects, tables,
and inline components. Information about change is recorded in the
form of attribute values. For detailed information about revision
tracking, consult the Interleaf 7 User’s Guide.

Markup for revision tracking can be complex. The following
example has been simplified to demonstrate the basic configuration.
It shows the markup for an editing episode named dante.

<!Revision Tracking,
Revision Tracking = On,
Current Version = ”dantever”,
Current Level = ”dante”,
<!RevLevel,”dante”, 0,
Insert Text Props = @attr,
Delete Text Props = @attr,
Insert Text Color = @attr,
Delete Text Color = @attr,
Inactive Insert Props = @attr,
Inactive Delete Props = @attr,
@”<<RevEditId>” = ”dante”>
<!RevVersion,”<<Base>”>
<!RevVersion,”dante”,
Contents = ”dante”,
Active Level = ”dante”>

>

<!Revision Tracking,...>, the opening declaration, encompasses both
<!RevLevel,...> (which specifies the edit under way or previously
undertaken), and <!RevVersion,...>, which indicates Contents and
Active Level of each individual version, assuming a default Base as
the starting point.

There are several optional attributes that can be specified with
properties listed under <!RevLevel,...>; these can be set to show
alterations to data.

Revision Tracking
Declaration

RevLevel
Declaration

RevVersion
Declaration

ASCII Format for Text

2−18�Interleaf 7

I�I

<!Autonumber Stream, ...> Declaration

<!Autonumber Stream, ...> declarations must appear before the
<!Class Defaults, ...> and <!Class, ...> declarations.

The basic form of the autonumber declaration is
<!Autonumber Stream, ... followed by the name of the autonumber
stream, the number of levels in the stream, and the closing angle
bracket (>).

<!Autonumber Stream, name, n,
Level m Symbol Type = Arabic/Upper Roman/

Lower Roman/Upper Alpha/Lower Alpha,
Level m Prefix = string,
Level m Suffix = string [.],
Level m Starting Value = n [1],
Level m Trail = Yes/No,
Level m Show = Yes/No>

The n after name represents the number of levels, which you must
specify. If a value for n is not specified, Interleaf 7 assumes 20
levels.

Trail represents Last Level Only on the Autonumber Stream
Properties dialog box.

You can define stream properties between the number of levels (n)
and the closing angle bracket by using entries comparable to those
on the Autonumber Stream Properties dialog box.

The other entries for each stream level through n must be declared
only if they are different from the default values. For a list of the
default values, refer to Appendix A, Default Values for ASCII
Format Documents.

Declarations

I�I

File Formats�2−19

<!Class Defaults, ...> Declaration

Certain values for component properties are used frequently. For
example, many components have a left margin of 0 inches. For
convenience, Interleaf ASCII format assumes a number of default
values for component properties.

When marking up a document, you can override any of the defaults
and declare a different property value to be used throughout the
document by inserting a <!Class Defaults, ...> declaration. For
example, if you want the text of a document to be Times 10 italic
instead of Times 10 roman, enter:

<!Class Defaults,
Font = F5>

This font must have been defined in the <!Font Definitions, ...>
declaration, which must precede the <!Class Defaults, ...> declaration.

In the <!Class Defaults, ...> declaration, you can specify a value for
any component property except tabs. For more information about
the properties and values used in the <!Class Defaults, ...>
declaration, refer to <!Class, ...> Declaration in this chapter.

The Fill property controls the treatment of newlines in the input
document. The component property Fill = off inserts a hard return
at the end of each line. This is useful for components containing
tabular material.

When Fill = blank, the loader inserts a blank at the end of each
input line if no blank was there and if it is not the last line of a
component. This is useful for documents that have been prepared
with word processors, or with editors that do not ensure blanks at
ends of lines. For more detailed information, see Appendix D, Filter
Writing.

If your document has Fill = off in its declarations, and also has an
<!Include Declarations, ...>, Fill is overridden by the declarations
loaded in from the included file. You must be sure that the Fill = off
statement is in the included file to take effect.

Fill

Note

ASCII Format for Text

2−20�Interleaf 7

I�I

<!Class, ...> Declaration:;:Declaration for Components

A component <!Class, ...> declaration defines the name and
properties of a master component. This provides the ASCII loader
with property values to use in loading components of a given name.
Most of the information specified in the component <!Class, ...>
declaration is identical to the information on the Component
Properties dialog box in Interleaf 7. When a property has the
default value, however, it is not listed in the ASCII format
component class declaration.

When a document is saved, the properties assigned to each
component class are compared with the properties of the master
component for that class. There are two exceptions:

� The properties of a frame within a component are always
checked against the global defaults for that frame.

� When a master component has an inline component in a
microdocument in a frame as part of its contents, the master for
that inline component might not have been dumped yet. So the
properties of a component in a microdocument in a frame or a
master row in a master table are not checked against their
master, they are checked against the global defaults.

User−defined attributes must be specified each time they occur. In
Interleaf ASCII format, a user−defined attribute/value specification
on the component master is not created automatically for instances
of that master. If an instance has user−defined attributes, you must
specify them with the instance even if you already specified them on
the master in the <!Class, ...> declaration. For more information,
refer to User−Defined Attributes in this chapter.

It is an error to have two or more <!Class, ...> declarations
specifying the same component name.

Note

Declarations

I�I

File Formats�2−21

The markup for the <!Class, ...> declaration is as follows:

<!Class, component name,
Character Units = Yes/No,
Top Margin = x inches, [0]
Bottom Margin = x inches, [0.14]
Left Margin = x inches, [0]
Right Margin = x inches, [0]
First Indent = x inches, [0]
Indent Count = n, [1]
Line Spacing = x lines or x points, [1.31 lines]
Alignment = Left/Right/Both/Center/Inner/Outer,
Font = Fn, [Times 10]
Begin New Page = Yes/No,
Begin New Column = Yes/No,
Straddle = Yes/No,
Orphan Control = 1-16, [2]
Widow Control = 1-16, [2]
Allow Page Break Before = Yes/No,
Allow Page Break Within = Yes/No,
Allow Page Break After = Yes/No,
Hyphenation = On/Off/Normal/Full/0-10, [5]
Composition = Optimum/Overset,
Track Kerning = n, [0]
Track Kern Spaces = Yes/No,
Wordspace Min = x,
Wordspace Nom = x,
Wordspace Max = x,
Wordspacing = Default,
Letterspacing = Yes/No,
Letterspace Max = x,
TOC Doc Name = name,
TOC Page Stream = name
Left Tab = x inches,
Right Tab = x inches,
Tab Origin = Column/Margin
Decimal Tab = x inches,
Decimal Char = ”<char>”
Numeric Tab = x inches
Left Profile = start; count; indent,
Right Profile = start; count; indent
Profiling = None,
Contents = Private/Prefix/Shared/Prefix Shared
Lisp = ”actual Lisp code”>

ASCII Format for Text

2−22�Interleaf 7

I�I

The component name can be up to 19 characters long. the
component name can be any combination of letters, numbers, and
other characters. However, unless you have a particular need for
other characters, it is less confusing if you use only alphanumeric
characters. Uppercase and lowercase letters are considered
different characters. Refer to Quoting Conventions in the chapter
ASCII Format Basics for guidelines on using non−alphanumeric
characters.

The left and right component margins are the distances from the
page margins to the left and right edges of the component. When
the component margins are set to 0 inches, the component is as
wide as the area between the left and right page margins.

Top component margins have no effect at the top of a page; bottom
component margins have no effect at the bottom of a page.

Together, page and component margins must allow at least 0.5 inch
of space for text per column, except in microdocuments. Margin and
Indent settings must be consistent. For example, negative indents
must not overlap the page edge, and positive indents must not
exceed the right margin.

The Initial Indent property determines the amount of indentation
for the first line or group of lines in the component.

Use the Indent Count property to specify the number of lines to be
indented by the amount that you specified in the Initial Indent
property.

The Alignment property determines the horizontal alignment of text
in a component.

� A value of Left aligns the text at the left component margin and
leaves a ragged−right component margin.

� A value of Right justifies the text at the right component margin
and leaves a ragged−left component margin.

� A value of Both (justified) causes text to be justified between
the left and right component margins. The word spacing expands
to fill each line. This is the default.

Name

Margins

Indent

Alignment

Declarations

I�I

File Formats�2−23

� A value of Inner aligns the text at the inner margin (the left
margin on a right−hand page, for example), leaving the other
margin ragged.

� A value of Outer aligns the text at the outer margin (the right
margin on a right−hand page, for example), leaving the other
margin ragged.

� A value of Center centers each line of the text between the left
and right component margins. Make sure the Initial Indent is set
to 0.

If no value is entered (default case), text is justified between the left
and right component margins. Word spacing expands to fill each
line.

If a component’s alignment is Centered, Right, or outer, you cannot
insert tab characters in the component.

You usually declare a Font for every class. The font properties are
Family, Size, Bold, and Italic. These settings determine the default
font for text in the component. The default is controlled by the
value of (ld-set-vars font-keyword).

The Begin New Page property forces the component to begin on a
new page. In a multicolumn document, Begin New Column forces
the component to begin in a new column.

In a single−column document, the Orphan Control and Widow
Control settings determine how many lines of a component can
appear at the top and bottom of a page. In a multicolumn
document, these settings determine how many lines can appear at
the top and bottom of a column. The default setting for Orphan
Control and Widow Control is 2. You can set a value from 1 to 16.
Column balancing may override widow/orphan control settings to
achieve the balance.

In the authoring user interface, Widow Control and Orphan Control
have been renamed Minimum Lines Before Break and Minimum
Lines After Break.

Font

Begin New Page

Widow and
Orphan Control

Note

ASCII Format for Text

2−24�Interleaf 7

I�I

When you set the Allow Break Within property to Yes, Interleaf 7
can put part of the component on one page and part of it on the
next page as long as this does not violate the widow/orphan settings
for the component. If you set Allow Break Within to No, Interleaf 7
does not, as a rule, break the component across page boundaries.
The default value is Yes.

In multicolumn documents, the Allow Break Within property also
determines whether a component is allowed to break across
columns on the same page.

When Allow Break After is set to No, Interleaf 7 does not permit a
page break between this component and the following component.
The default value for Allow Break After is Yes.

In multicolumn documents, Allow Break After also determines
whether a column break is permitted between this component and
the following one.

If the page break settings are too restrictive, Interleaf may override
them to compose the page.

The Straddle property determines whether a component extends
horizontally across the entire text area of a multicolumn document.

The default setting for Straddle is No. With this setting, a
component assumes the column width. If Yes is specified, the
component spans the entire width of the text area (page width
minus margins). The Straddle setting has no effect on components in
a single−column document. A component that is Soft Straddled does
not show Straddle = Yes in ASCII markup.

The values you can set for the Composition property are Optimum
and Overset. The Optimum value specifies a uniform word space as
close as possible to the optimum word space for the line. Overset
puts as many words on a line as possible without going under the
minimum word space.

Allow Page Break

Note

Straddle

Composition

Declarations

I�I

File Formats�2−25

The spacing properties you can specify on the <!Class, ...>
declaration or on the <component, ...> command are as follows:

Line Spacing = x lines or x points,
Track Kern Spaces = Yes/No,
Wordspace Min = x,
Wordspace Nom = x,
Wordspace Max = x,
Wordspacing = Default,
Letterspacing = Yes/No,
Letterspace Max = x,

Line Spacing determines the distance between the lines of type
within a component. It does not affect the amount of space before
the first line in a component. Line Spacing cannot be less than −1.0
lines (−12 points). You get relative line spacing by specifying
Jlines." To get absolute line spacing, specify Jpoints" or another
absolute unit of measurement.

The value for the Wordspace properties is a multiple of the natural
word space. For example, Wordspace Min = .4 means 0.4 multiplied
by the natural word space. The spacing properties are on the
Custom sheet of the Component Properties dialog box. Letterspacing
Max is determined with the same procedure.

You can also specify Wordspacing = Default when there are word
spacing specifications on the master but not on the particular
instance.

TOC stands for Table Of Contents. In the <!Class, ...> declaration,
you must specify a TOC Doc Name property for components you
want included in the table of contents or a related document, such
as a figure list. For example, TOC Doc Name = TOC.

When a TOC document is created, Interleaf 7 takes the first
component in the document with the TOC Doc Name property,
converts it to a TOC component (for example, chapter1TOC), and
makes it Times 10−point bold. All other components with the same
name are made Times 10−point bold. The remaining components
with the TOC Doc Name entry are made Times 10−point roman in
the TOC document.

Spacing

TOC Doc Name

ASCII Format for Text

2−26�Interleaf 7

I�I

There are a variety of component Tab properties. In the following
Component Tab Properties examples, all tab stops are set at 1−inch
increments:

Left Tab = 0/1/2/3/4/5/6/7 Inches,
Right Tab = 0/1*7 Inches,
Center Tab = 1*7 Inches,Numeric Tab = 1*7 Inches,
Decimal Tab = 1*7 Inches,
Decimal Char = ”$”,

The Decimal Character property causes tab stops to align on any
specific character you determine instead of a decimal point. The
character appears only if Decimal Tab has been specified.

Specify Numeric Tab when you want columns of numbers set with
tab stops to align on the last numeric character, even though other
material may follow. For example, $(.02) and 1.90% are aligned
using the 2 and the 0; other characters are ignored.

A slash (/) delineates one setting from the next.

An asterisk (*) after a number in a tab stop setting indicates evenly
spaced increments. The number immediately preceding the asterisk
is the amount of the increment, and the number after the asterisk is
the number of increments. For example, if you set Left Tab = 1/.5*3
inches, tab stops start at 1, and 0.5 is added to the previous setting
three times. This specification gives you left tab stops at 1, 1.5, 2,
and 2.5 inches.

If there is nothing in front of the number preceding the asterisk, the
first tab stop is set at 0. For example, if you set Left Tab = .5*3
inches, the first tab stop is 0 and 0.5 is added to the previous setting
three times. The settings are at 0, 0.5, 1, and 1.5 inches.

If you do not specify any component tab property, Interleaf uses the
default values.

If you do not want any tabs in the component (either in a
component class declaration or in the command for a particular
component), set the Left Tab property without a value. For example:

Left Tab = ,

The comma indicates that the entry is empty; you must use it to
avoid loading the default tab stops.

Tab

Declarations

I�I

File Formats�2−27

You can use the Left Profile and Right Profile properties for shaping
the text in a component. The generic form of these properties is:

Profile = start; count; indent

Start is the number of the line in the component where you want the
profile indent to begin; count is the number of lines for which you
want the indent to be in effect; indent is the number in inches you
want the text to be indented. For example:

Left Profile = 1; 5; 2 inches

This specification starts a left indent at line 1 of the paragraph
component, is in effect for 5 lines, and indents the text 2 inches from
the left margin.

You can also specify Profile = None for an instance when there is a
profile specification on the master but not on the instance.

Make sure the left and right profiles do not overlap so as to exclude
the middle space, leaving no room for text. For example, if a left
profile specifies an indent of 7 inches and a right profile specifies an
indent of 4 inches, there is no room for text since the left and right
indents overlap.

The profile properties appear on the Profile sheet of the
Component Properties dialog box.

The Contents property determines prefix and shared content in the
component. If the value is set to Private, the master contributes no
prefix or shared content to the component instance. It may
contribute initial content, but that content can be varied without
affecting other instances.

If the value of Contents is set to Prefix, the master contributes a
prefix to the component instance. A component instance can have
Contents set to Private, in which case the instance has no prefix
even though the master has Contents set to Prefix.

If the value of Contents is set to Shared, the master contributes
shared content to the component instance. A component instance
can have Contents set to Private, in which case the instance has no
shared content even though the master has Contents set to Shared.

Shaping

Note

Contents

ASCII Format for Text

2−28�Interleaf 7

I�I

If the value of Contents is set to Prefix Shared, the master
contributes both prefix and shared content to the component
instance. A component instance can have Contents set to Private, in
which case the instance has no prefix or shared content even though
the master has Contents set to Prefix Shared.

In the ASCII markup for components with shared material, there is
a <!Class, ...> declaration for the component with Contents set to
Shared. The shared−content material follows the Contents = Shared
specification.

For example, you create a shared−content component called
Greetings. It has for shared contents the line: We are pleased to
inform you. The markup for this component is

<!Class, Greetings,
Top Margin = 0.04 inches,
Bottom Margin = 0.04 inches,
Line Spacing = 1.162 lines,
Font = F4,
Left Tab = 0/1*3 inches,
Composition = Optimum,
Contents = Shared>

We are pleased to inform you

The ASCII markup for components with prefix material is more
complex. First, there is a <!Class, ...> declaration for the
component with Contents set to Prefix. Then there is a <!Class, ...>
declaration for the prefix with Contents set to Shared, followed by
the content of the prefix. Finally, there is a specification for the
prefix with Contents set to Shared. A prefix is indicated by the
vertical bar character (|), which is followed by a full colon (:),
followed by the name of the component. That is,

|:component name

Declarations

I�I

File Formats�2−29

For example, you create a prefix component called bullet. The
markup for this prefix component is

<!Class, bullet,
Top Margin = 0.04 inches,
Bottom Margin = 0.04 inches,
Left Margin = 0.75 inches,
Right Margin = 0.75 inches,
First Indent = -0.25 inches,
Line Spacing = 1.162 lines,
Font = F4,
Left Tab = 0/0.50/1//2/3 Inches,
Composition = Optimum,
Contents = Prefix>

<!Class, |:bullet,
Top Margin = 0.04 inches,
Bottom Margin = 0.04 inches,
Line Spacing = 1.162 lines,
Font = F4@i*,
Left Tab = 0/0.50*3 Inches,
Composition = Optimum,
Contents = Shared>

<F6>S<F0><Tab>

<|:bullet,
Font = @i*,
Subcomponent = Yes,
Contents = Shared><F6>S<F0><Tab><End Sub><F0>

The @i* convention states that a font used in the prefix will inherit
its definition from its surrounding component. For a fuller
description of this convention and others related to inherited
properties, see Inline Components in this chapter.

Note

ASCII Format for Text

2−30�Interleaf 7

I�I

You can combine prefix and shared content in one component
definition. The following example gives the markup for a
component called Prefix_Shared, a component with both prefix and
shared material.

<!Class, Prefix_Shared,
Top Margin = 0.04 inches,
Bottom Margin = 0.04 inches,
Line Spacing = 1.162 lines,
Font = F4,
Left Tab = 0/1*3 Inches,
Composition = Optimum,
Contents = Prefix Shared>

<!Class, |:Prefix_Shared,
Top Margin = 0.04 inches,
Bottom Margin = 0.04 inches,
Line Spacing = 1.162 lines,
Font = F4,
Left Tab = 0/1*3 Inches,
Composition = Optimum,
Contents = Shared>
Prefix for this component

<|:Prefix_Shared,
Font = @i*,
Subcomponent = Yes,
Contents = Shared><F0>Prefix for

this component<End Sub>
<F0>Shared Content for this component

Declarations

I�I

File Formats�2−31

<!Master Frame, ...> Declaration

The markup for the <!Master Frame, ...> declaration is as follows:

<!Master Frame,
Name = name,
Placement = At Anchor/Following Anchor/Top/Following

Text/Bottom/Overlay/Underlay,
Width = x inches/Column/Page Without Margins/

Page With Both Margins/Page With Left Margin/
Page With Right Margin/Page With Outer Margin/
Page With Inner Margin/Left Page Margin/
Right Page Margin/Outer Page Margin/Inner Page
Margin/Gutter/Contents, [2 inches]

Height = x inches/Page Without Margins/
Page With Both Margins/
Page With Top Margin/Page With Bottom Margin/
Top Page Margin/Bottom Page Margin/Contents,
[1 inch]

Horizontal Reference = Page With Both Margins
/Page Without Margins/

 Left Page Margin/Right Page Margin/
Inner Page Margin/Outer Page Margin/Column/
Left Gutter/Right Gutter/Anchor,

Vertical Reference = Page With Both Margins/
Page Without Margins/
Top Page Margin/Bottom Page Margin/Anchor,

Horizontal Alignment = Right/Left/Center/Inner/Outer,
Vertical Alignment = Top/Center/Bottom/Baseline/

+/- n inches,
Repeating = Yes/No/Begin/End,
On Anchor Page = Yes/No,
Begin on Anchor Page = Yes/No,
End on Anchor Page = Yes/No,
Auto Edit = Yes/No,
Size Contents to Width = Yes/No,
Size Contents to Height = Yes/No,
Shared Contents = Yes/No,
Same Page = Yes/No,
No Border = Yes/No,
Not Selectable = Yes/No
Overlap = Yes/No, (for At−Anchor frames only)
Numbered= ‘<Autonum, streamname, level, ...>’,
Superscript= Yes/No,
Diagram =

...>

For information about the markup that follows Diagram =, refer to
the chapter ASCII Format for Graphics Objects.

ASCII Format for Text

2−32�Interleaf 7

I�I

Starting with Release 5.2, numerical values for both Width and
Height are output automatically, in addition to the frame dimension
specifications, if any.

Just as component classes exist apart from any particular
component, frame masters exist apart from any particular frame in
a document. The representation of frames and frame masters in
ASCII format differs from the representation of components and
component masters: each master frame and each frame instance is
represented by the full complement of properties, not just by the
properties that differ from the defaults.

If an externally created ASCII document contains no <!Master
Frame, ...> declarations, six default master frames are loaded with
the document when it is opened on the desktop. If there are any
<!Master Frame, ...> declarations in an external document, only
these masters are loaded with the document when it is opened on
the desktop.

If name contains any spaces, it must have quotation marks around it
(see Quoting Conventions in the chapter ASCII Format Basics).

If At Anchor is used, the frame is placed at its anchor. The anchor is
not visible.

If Following Anchor is used, the frame is located immediately below
the text line containing the anchor.

If Top is used, placement is at the top of the page.

When Following Text is specified, placement of the frame is
immediately below all text on that page but not necessarily at the
bottom of the page. If a Following Text frame does not fit between
the anchor and the bottom of the page, the frame is placed at the
top of the next page.

Bottom placement of a frame means the frame occurs after its
anchor, usually at the bottom of the same page. If there is not room
for the anchor and the frame on the same page, the frame is placed
at the bottom of the next page, or at the top of the next page if the
next page is otherwise empty.

Note

Name

Placement

Declarations

I�I

File Formats�2−33

A frame with Overlay placement overlays the other content of the
page like a transparent layer. A frame with Underlay placement
underlays the other content of the page. Overlay and Underlay
frames do not displace text on the page.

You can have fixed frame width, or you can express the width in
terms of page or frame content dimensions. For example, the width
can be half the left margin, or column width plus a pica, or equal to
the content’s width. The generic form of the expression is

Width = (value * fraction) + adjustment

The possible values for Width are Column, Page Without Margins
(Page is equivalent), Page With Both Margins, Page With Left
Margin, Page With Right Margin, Page With Outer Margin, Page
With Inner Margin, Left Page Margin, Right Page Margin, Outer
Page Margin, Inner Page Margin, Gutter, and Contents.

Fraction is limited to a range of 0 to 4, and it is omitted if it is equal
to one. Adjustment may be omitted if equal to 0.

Width = (Page Without Margins * 0.65) + 0.20 inches

The Frame Height property is similar to the Frame Width property.
The values for Frame Height are Page Without Margins (Page is
equivalent), Page With Both Margins, Page With Top Margin, Page
With Bottom Margin, Top Page Margin, Bottom Page Margin, and
Contents.

Starting with Release 5.2, the actual values for frame height and
width are always written to output regardless of the type of frame
specified. Thus, even if a value such as Contents is used, the actual
width is written to output. By default, these values are in inches.

Frame Horizontal Reference is the page container to which the
frame’s horizontal alignment refers, and it is only applicable to
Overlay, Underlay, and Side frames. For At Anchor frames, this
field is meaningless. For other displacing frames, the reference is
implicitly Column, and you need not specify it. Displacing frames
take up room in the text; Overlay, Underlay, and Side frames do
not.

Width

Height

Note

Horizontal
Reference

ASCII Format for Text

2−34�Interleaf 7

I�I

For example, if an Overlay frame is right−aligned in the left margin,
you specify Horizontal Reference = Page Without Margins.

The complete list of horizontal reference values is Page With Both
Margins, Page Without Margins, Left Page Margin, Right Page
Margin, Inner Page Margin, Outer Page Margin, Column, Left
Gutter, Right Gutter, and Anchor.

Anchor is a special setting since it does not define a page container.
Left−aligned to anchor means the left edge of the frame aligns with
the anchor.

The frame Vertical Reference property applies only to Overlay and
Underlay frames. For At Anchor frames, the reference is implicitly
Anchor, and for other displacing frames (Top, Following Anchor,
etc.) this field is meaningless.

An example of vertical reference is an Overlay frame
bottom−aligned within the top margin specified as Vertical Reference
= Top Page Margin.

The complete list of vertical reference values is Page With Both
Margins, Page Without Margins, Top Page Margin, Bottom Page
Margin, and Anchor.

You can align the frame to the Right, Left, Center, Inner, or Outer
edges of the horizontal reference container. The Inner/Outer setting
is interpreted for single−sided pages as Right/Left.

You can also specify an offset to that alignment. For left, right, and
center alignments, positive offset values mean an offset to the right
and negative offset values mean an offset to the left. For inner and
outer alignments, positive values mean an offset away from the
binding and negative values mean an offset toward the binding.

The generic format for specifying horizontal alignment is as follows:

Horizontal Alignment = horizontal alignment value + or -
offset

For example, you specify the Horizontal Alignment property for an
Overlay frame aligned to the left edge of the page and offset 0.10
inch to the right as Horizontal Alignment = Left + 0.10 inches.

Vertical
Reference

Horizontal
Alignment

Declarations

I�I

File Formats�2−35

The Vertical Alignment property applies only to fixed frames,
Overlay frames, Underlay frames, Side frames, and At Anchor
frames For floating displacing frames (Top, Following Anchor, etc.),
the Vertical Alignment property has no effect.

Within the vertical reference container, you can align the frame to
the Top, Center, or Bottom edges. You can also align to the Baseline
frames that have vertically anchor−relative placement (At Anchor
and Overlay frames with a setting of Vertical Reference = Anchor).
You can also specify an offset. A negative offset value means up; a
positive offset value means down.

For example, if a frame is 0.25 inch below center, the specification is
Vertical Alignment = Center + 0.25 inches.

Repeating frames appear in the same position on consecutive pages.
Repeating frames can appear on a series of pages, but not on a
series of columns.

A frame can be repeating if it is a shared−content frame with
placement of Top, Bottom, Following Text, Overlay, or Underlay.

You specify whether the frame begins or ends a repeat sequence,
and whether or not the frame takes effect on its anchor’s page. You
can use Begin, Start, or Yes to specify a repeating frame that begins
a sequence; for example, Repeating = Start. You can use End or
Finish to specify a repeating frame that terminates a sequence; for
example, Repeating = End.

To specify that the repeating frame take effect on its anchor’s page,
use one of the following: On Anchor Page = Yes, Begin on Anchor
Page = Yes, End on Anchor Page = Yes.

You can associate a frame with object−specific editorsNthe
microdocument text editor rather than the default diagramming
editor. The ASCII markup for specifying object editor is Auto Edit
= Yes.

Vertical Alignment

Repeating Frame

Editor

ASCII Format for Text

2−36�Interleaf 7

I�I

You use the Size Contents To Width and Size Contents To Height
properties to force the frame contents to fit the frame as closely as
possible.

Frame Width From Contents and Size Contents To Width are mutually
exclusive properties; you can turn on only one of these properties
for a frame. Similarly, you cannot use Frame Height From Contents
and Size Contents To Height simultaneously on a frame.

If you set Shared Contents to Yes in the command for a frame
instance, the command must not contain markup for the graphic,
but there should be graphics markup in the declaration for the
master frame.

In ASCII markup, Same Page is synonymous with Same Column;
both appear as Same Column on the Frame Properties dialog box.
This property specifies whether Interleaf 7 should try to place the
frame on the same page (in a single−column document) or in the
same column (in a multicolumn document) as the frame anchor.

If Same Page is set to Yes, Interleaf 7 places the frame on the same
page or in the same column as the frame anchor. If Same Page is set
to No, the software tries to place the frame on the same page or
column as the frame anchor, but no special adjustments are made to
accommodate this placement.

Overlap may be set to Yes only if At Anchor is specified. With
Overlap selected, a frame and its content can overlap other content
on a document page.

When No Border is set to Yes, the gray marking boundary of an
open frame does not appear in a document opened by Interleaf 7.

When the Not Selectable property is set to Yes, a frame may no
longer be selected in Interleaf 7.

The Numbered property is for numbered frames. The Numbered
property markup is the same as the general autonumber property
markup. The generic markup for the Numbered property is:

Numbered = ’<Autonum, name, level, [other autonum
markup]>’

Content
Auto−Sizing

Note

Shared Contents

Same Page

Overlap

No Border

Not Selectable

Numbered

Declarations

I�I

File Formats�2−37

An example of markup for the Numbered property is:

Numbered = ’<Autonum, footnote, 1, Tagname = EiXYY2e4vr>’

The single quotes surrounding the autonumber markup and the
angle brackets are optional. They make for better error recovery.

The Superscript property is for numbered frames. The markup has
Yes and No as its only values. This Superscript property corresponds
to the Superscript property on the Custom sheet of the Frame
Properties dialog box for numbered frames.

Some frame properties are incompatible with others. The Frame
Properties dialog box shows how these features interact. For
example, the Repeating choices only appear if the frame is not
anchor−relative and has shared content; you cannot specify
Repeating = Yes for At Anchor frames with no shared content.

The following lists some of the incompatibilities in ASCII markup
for frames:

� A shared frame cannot have Size Contents To Width = Yes or
 Size Contents To Height = Yes.

� A frame that has no shared contents cannot have
Repeating = Yes.

� An anchor−relative frame (Placement or Reference refers to the
anchor) cannot have Repeating = Yes.

� A fixed At Anchor frame cannot have the Numbered property
specified.

� A repeating frame cannot have the Numbered property
specified.

� Frame Width = Contents is incompatible with
Size Contents To Width = Yes.

� Frame Height = Contents is incompatible with
Size Contents to Height = Yes.

� Baseline alignment is meaningful only with vertically
anchor−relative frames.

Superscript

Property Conflicts

ASCII Format for Text

2−38�Interleaf 7

I�I

<!Master Diagramming Object,...> Declaration

For information about the <!Master Diagramming Object, ...>
declaration, see the chapter ASCII Format for Graphics Objects.

<!Master Table,...> Declaration

For information about the <!Master Table, ...> declaration, see the
chapter ASCII Format for Tables.

<Master Row... > Declaration

For information about the <Master Row, ...> declaration, see the
chapter ASCII Format for Tables.

<!Comment, ...> Declaration

You can insert comments in ASCII markup. These comments do not
appear when you display the document in Interleaf 7; the ASCII
loader eliminates them. This means that if you resave the document
in ASCII format, the comment is lost.

The loader ignores everything between <!Comment, ... and the
closing angle bracket (>) in the comment declaration.

If you have embedded matching angle brackets (<...>) within the
comment, the loader treats them as part of the comment.

<!End Declarations> Declaration

This declaration’s function is to mark the conclusion of the series of
declarations in an Interleaf ASCII file. It has no effect on input. It is
optional but is always generated when a document is saved with
Interleaf 7. Its main purpose is to make it easy for filters that want
to skip over all declarations.

Commands

I�I

File Formats�2−39

Commands

<Autonum, ...> Command:;:Autonumbers

The markup for saving the current value of an autonumber is:

<Autonum, streamname, level, {other autonum markup},
Value = CurrentValue>

For example:

<Autonum, list,1,First = Yes,Tagname = vivian,Value = 1>

The <Autonum, ...> command places an autonumber token in the
text. The basic form of the autonumber command is <Autonum,
name, n>. Name is the name of the autonumber stream, and n is a
number between 1 and 20 indicating the level of the autonumber
stream in the command.

There are other properties that can follow the level number. These
properties are the First property, the Restart property, and the
Tagname property.

If the autonumber token is the first in the stream, the command is,
for example, <Autonum, figure, 1, First = Yes>.

To restart a numbering stream, use the command
<Autonum, figure, 1, Restart = Yes>. You must include the
Restart = Yes property. You can use this property only in the
command for a Level 1 autonumber token.

If you plan to make autoreference to the autonumber, the command
can include the Tagname property. There are two forms of this
property:

� When you name the tag, the command looks like this:
<Autonum, figure, 1, Tagname = string>.

� If you let Interleaf 7 name the tag, the command looks like this:
<Autonum, figure, 1, Tagname = eIb5W3user>.

ASCII Format for Text

2−40�Interleaf 7

I�I

The value of the Tag property in the autoreference must be the
same as the value of the Tagname for the autonumber that is being
used as the reference point. An autoreference can refer either to an
autonumber or to the page on which the autonumber appears. The
form is either <Ref, Auto #, Tag = Tagname (from Autonum
entry)> or <Ref, Page #, Tag = Tagname (from Autonum entry)>.

You can use Tag and Tagname interchangeably in markup. When
you save documents, however, you see Tagname in autonumber
markup and Tag in autoreference markup.

Spaces in an autonumber or autoreference tag must be enclosed in
quotation marks. Otherwise, they are stripped out when the
document is loaded by Interleaf 7. For more information, see
Quoting Conventions in the chapter ASCII Format Basics.

When you save a document, you can save the current value of
autonumbers. The current value is used when the document
containing the autonumber (or the document into which you paste
the autonumber) has numbering streams frozen.

To save the current value of an autonumber token, you specify this
current value for the Value property. The string for the current value
string can be no longer than 120 characters.

<Ref, ...> Command:;:Reference Tokens

The <Ref, ...> command creates one of several types of reference
tokens. The basic form of the autoreference command is<Ref, Auto
#, Tag = tagname> or <Ref, Page #, Tag = tagname>, where
tagname is from an Autonum entry. The first command causes the
reference to refer to the value of the autonumber token, and the
second causes it to refer to the number of the page on which the
autonumber token appears. Tagname is limited to 15 characters.
Refer to <Autonumber, ...> Command in this chapter for details.

You can save the current value of an autoreference when you save
the document. The current value is used when the document
containing the autoreference (or the document into which you are
pasting the autoreference) has frozen number streams.

Saving the
Current Value
of an Autonumber

Saving the Current
Value of an
Autoreference

Commands

I�I

File Formats�2−41

You save the current value by specifying the current value for the
Page Value property; for example, <Ref, Auto #, Page Value = 1>.
The value string can be no longer than 120 characters.

An attribute reference displays the value of a user−defined attribute
over a specified range. The range can be a component,inline , page,
or sheet (front and back of a page). The attribute reference can
display the minimum or maximum of the values over that range by
setting Operation = Min or Max.

The following is an example of attribute reference markup:

<Ref Attribute Value, Range = Sheet, Operation = Max,
Attribute = ”string (name of the attribute)”,

Result = ”attribute value”,
Lookup Pairs = ”NIL” ”0” ”zero” ”1” ”one” ”2” ”two”>

The Show Blank Pages reference indicates that the following page is
blank. For example, a page at the end of a chapter could be blank. A
reference on the facing page can indicate that the following page is
blank.

The following is an example of Show Blank Pages reference markup:

<Ref, Show Blank Page, Page Value = a>

Show Blank Pages is primarily useful for double−sided documents.
For single−sided documents Show Blank Pages only has an effect
when the document is in a book.

Use the Current Frame and Total Frame reference properties to
number multi−page tables; for example, Sheet 2 of 10. You
determine the start of the range with the Starting Num property.

The following are examples of this type of reference markup:

<Ref, Current Frame>
<Ref, Total Frames, Starting Num = 6>

Attribute
Reference

Show Blank
Pages Reference

Table Page
Number Reference

ASCII Format for Text

2−42�Interleaf 7

I�I

<component, ...> Command

The markup for the <component, ...> command is identical to that
for the <!Class, ...> declaration with the following exceptions
(markup common to both <!Class,...> and <component, ...> has
been omitted, see <!Class...>):

<component,
@attribute = value, (see User−Defined Attributes in this

chapter)
Hidden = Yes/No,
Read Only = Yes/No,
Font = Fn,
Fill = Yes/No/On/Off/Blank
A-Page Added Hyph = Yes/No,
A-Page Added FJ = Yes/No,
A-Page Removed HCR = Yes/No,
A-Page Widow = n,
A-Page Glues = n,
A-Page Bottom Margin = x inches,
Subcomponent = Yes/No>

The component in the <component, ...> command is the name of
the component; for example, <para, ...>. In the body of the
document, the command <para> indicates the beginning of a para
component. If the properties of a component are identical to the
properties of the component master (<!Class, para, ...>), you need
specify only the name of the component, <para>.

If the properties are not identical to those of the component class,
you must specify the properties that are different within the
command. For example, <para, Font = F3> indicates that the font
of this paragraph is different from the font in the class declaration
for the para component.

The component property Fill = off inserts a hard return at the end
of each line. This is useful for components with tabular material.

Name

Fill

Commands

I�I

File Formats�2−43

When Fill = blank, the loader inserts a blank at the end of each
input line if no blank was there and if it is not the last line of a
component. This is useful for documents prepared with word
processors or editors that do not ensure blanks at the ends of lines.
When line breaks on the word processor differ from those in
Interleaf 7, Fill = blank keeps words from running together.
Usually, it is easiest to put this command in a <!Class Defaults, ...>
declaration so that it applies to all component classes.

If a document has a hidden component (or frame, or table row)
when you save the document, the ASCII dumper program outputs
Hidden = Yes as a property for that document element.

Output filter programs can search for Hidden = Yes to eliminate all
hidden document elements. Hidden = Yes generally appears in
markup to indicate that an element of a document is hidden by a
control expression.

However, Hidden = Yes may also indicate that an element is part of
a master’s content, for example, a component that is part of the
contents of a master frame, a frame that is part of the content of a
master component, and a component in a frame that is part of a
master component. Since table cells are part of the content of table
row masters, the phrase Hidden = Yes appears in the ASCII markup
for any Master Row definition. Master Row definitions appear in
the markup for both table masters and table instances. For example:

<!Master Table, ”3x3”,
Columns = 3,
Column 1 Width = 1 units,
Column 2 Width = 1 units,
Column 3 Width = 1 units,
Row = ”row”,
Row = ”row”,
Row = ”row”>

<Master Row, ”row”>
<Cell><”3x3:cell”,

 Hidden = yes>
<Cell><”3x3:cell”,

Hidden = yes>
<Cell><”3x3:cell”,

Hidden = yes>
<End Table>

Hidden =Yes/No

ASCII Format for Text

2−44�Interleaf 7

I�I

Similar markup appears for each Master Row definition present in
markup for a table instance. Use of this phrase to indicate that an
element is part of a master is not limited to table markup, but
always occurs in table markup.

Both Hidden = Yes and Hidden = No are ignored by the Interleaf
ASCII loader.

Allows you to specify any component as a read−only component.
Read−only components cannot be edited in Interleaf.

When you use the Misc� A−page� Split command to split a
component, inline, or table between two or more documents, the
ASCII dumper writes out ASCII A−page properties for the split
component, inline, or table. These ASCII properties contain
information about the state of the document when it was split.
Interleaf 7 uses this information if the split document is joined using
the Misc� A−page� Join command.

Do not attempt to modify these properties. Changing their values or
trying to generate them initially in ASCII format can have uncertain
results and cause your document to rejoin incorrectly.

In general, Interleaf 7 divides documents at existing page breaks. If
a component, inline component, or table straddles a page break,
Interleaf 7 splits the component, inline, or table between the two
pages. The A−page ASCII properties occur for the instance of the
component, inline, or table that was split. These properties occur
only for the split instance, never for a master component, inline, or
table.

The ASCII A−page properties are:

� A-Page Added Hyph = Yes/No, whether Interleaf 7 added a
hyphen to the word where the A−page split occurred.

� A-Page Added FJ = Yes/No,whether Interleaf 7 added a
force−justify token where the A−page split occurred.

� A-Page Removed HCR = Yes/No, whether Interleaf 7 removed a
hard carriage return where the A−page split occurred.

� A-Page Widow = n, the setting for widow control at the point
where the A−page split occurred.

Note

Read Only
=Yes/No

A−Page

Commands

I�I

File Formats�2−45

� A-Page Glues = n, how many glues (soft spaces) were removed
at the point where the A−page split occurred.

� A-Page Bottom Margin = x inches, the setting for the bottom
margin at the point where the A−page split occurred.

These properties and their values are written in the component
definition for the start of the component now split. They are
generated automatically when needed, so you need not touch them.
Modifying them can cause your document to fail to rejoin or to
rejoin incorrectly.

Inline Components

You specify inline components by setting the property
Subcomponent = Yes. Only a subset of component properties apply
to inline components. These are:

Font family, size, and typeface

Color

Underline

super/subscripts

strikethrough

overbar

caps

rev bars

dictionary

pair kerning

track kerning

Placement: begin new page, begin new column

Allow breaks: within inline yes/no

Content

Table of Contents

There are no format options associated with margins, no tabs, and
no hyphenation available for inline components. Specifying any of
these properties has no effect.

The contents of the inline component follow the component
command. The end of the inline component is marked with the
token <End Sub> or <End Inline>. The ASCII loader accepts
either <End Sub> or <End Inline> but only produces <End Sub>.

ASCII Format for Text

2−46�Interleaf 7

I�I

A font token must appear first in the contents of the inline
component, and a font token must appear immediately after the
<End Sub> marker.

Typical markup for an inline component is

<name,
Font =
Subcomponent = Yes> <Fn>
contents of inline component <End Sub><F0>

An example of markup for an inline component is as follows:

<Prefix:bullet,
Font = @i*,
Subcomponent = Yes,
Contents = Shared><F6>S<F0><Tab><End Sub><F0>

An inline component can only occur inside a component or inside
another inline component. For information on font inheritance
properties for inline components, see Inline Component Inheritance
in the section Inline Components in this chapter.

Inline, Inline Component, Subcmpn, and Subcomponent are
synonymous in the ASCII loader. End Sub and End Inline are
synonymous in the ASCII loader.

You can specify inheritance for inline component default font
properties. Font inheritance applies to inline components only, but
must also be expressed for any master component that acts as a
master for inline components that use inheritance.

You can specify inheritance for each text property, as well as for
font properties such as Family, Size, Bold, and Italic. In addition to
setting a property to inherit, you can set relative inheritance for
many properties; for example, inherit and toggle, inherit and
increase, or inherit and decrease.

Inline Component
Inheritance

Commands

I�I

File Formats�2−47

To specify a text property for the default font of an inline
component or master, the syntax is

Font = Fn @property{value},

@property is the property−specifier character for that property; for
example, U for underscore, S for strikethrough. {value} is
property−specific information; for example, a track kerning value.
The property must be preceded by the @ symbol.

Text property inheritance markup cannot be used in <Fn>font
tokens.

The syntax for specifying that an inline component inherit a text
property from its surrounding component is

@iproperty

The syntax for specifying that a text property be inherited with some
operation is

@iop attr

The possible values of op are: + (inherit and increase), − (inherit
and decrease), ~ (inherit and toggle).

The syntax you use to specify that the inline component inherit all
text properties is

@i*

The syntax for specifying that a text property’s value is off (or on, in
the case of pair kerning) is

@~attr-

In this situation, the ~ character functions as a negation operator;
when it is used in specifying inheritance, it expresses a toggle
relationship.

You can specify font properties separately using the following
syntax: @F for family, @H for size, @E for bold, @I for italic.

Note

ASCII Format for Text

2−48�Interleaf 7

I�I

Each succeeding specification can override previous specifications.
If an Fn entry is the first specification, all information inherent in
that font number is assumed. If an Fn entry occurs farther along in
the specification, only the family information pertains. Anything not
specified is given the default value.

Examples

The following examples show how to use font inheritance syntax for
inline components:

� To specify an inline component that has default font F4 and
inherits nothing:

Font = F4

� To specify an inline component that inherits all font properties:

Font = @i*

� To specify an inline component that inherits all font properties,
but toggles the italic setting:

Font = @i* @i~I

� To specify an inline component that inherits all font properties,
but is always underlined:

Font = @i*@U

� To specify an inline component that has default font F4, inherits
underlining, and is always all uppercase:

Font = F4 @iU @C

� To specify an inline component that inherits all properties, but is
never bold:

Font = @i* @~E

Going in order through the six previous examples, with F0 as an
appropriate default font, the default fonts assigned to the master
are: F68; F0; F0; F0@U; F4@C; F0, unless F0 was bold, in which
case it is a font identical to F0 with bold off.

Commands

I�I

File Formats�2−49

You must specify inheritance of fonts only for the default font of
master components and inline components. It must never appear
within the contents of the component or as the default font for a
regular component.

You can specify inheritance for master components so that they act
as masters for inline components. Since they are also masters for
regular components, you can specify a default font for component
masters. For master components, if there are any inheritance
characteristics specified, the default font value assigned is the font
specified by all the other information. If only inheritance
information is specified, Interleaf 7 assigns an appropriate default
value.

<Table, ...>,<Row, ...>, and <Cell, ...> Commands

For information about the <Table, ...>, <Row, ...>, <Cell, ...>
commands, refer to the chapter ASCII Format for Tables.

<Fn> Command:;:Font Change

The <Fn> command specifies a font change. It specifies a type
family, a size, and a choice of bold, italic, or neither.

The numbered fonts are defined in the <!Font Definitions, ...>
declarations that appear at the beginning of the document. The
Interleaf font code numbers used when a document is saved change
from one release of the software to the next, and they may change if
new fonts are installed or if the file is saved in ASCII format while
zoomed. You can use numbers other than the Interleaf font code
numbers. When you save the document in ASCII format, Interleaf 7
converts your font numbers to the code numbers Interleaf 7 uses, as
long as you have used the font numbers consistently in the
document.

An example of the markup for a font change is

<F6>text in the new font <F0>

<F6> specifies the font for the words following the command, and
<F0> specifies a return to the default font for the component.

You can also use a non−default font number in the command at the
end of the font change.

ASCII Format for Text

2−50�Interleaf 7

I�I

Text Properties

You can specify the following text properties in ASCII markup:

� @U = underscore

� @S = strikethrough

� @T = superscript

� @B = subscript

� @R = revision bars

� @P = pair kerning off

� @K = track kern

� @O = overbar

� @D = double underbar

� @Z = color number

� @L = language for spelling/hyphenation dictionary

� @A = all small caps

� @C = all caps

� @X = caps and small caps

@Z0 is white text. See the <!Color definitions...> declaration.

The markup for these text properties must occur immediately after
the font number and must be preceded by the @ symbol. For
example, <F6@U@S> indicates the text that follows is Times
10−point italic with underlining and strikethrough

The markup F0 cannot be used with @R.

You specify the language text property with @L plus a two−letter
language code. The default is American English. To specify
Norwegian as your spelling hyphenation choice, the markup is the
following:

<F4@Lno>

Note

Note

Commands

I�I

File Formats�2−51

The language codes are as follows:

American English am (default)
British English br
Canadian French ca
Danish da
Dutch du
Finnish fi
French fr
German ge
Italian it
Norwegian no
Portuguese po
Spanish sp
Swedish sw
No language nl

The loader loads documents containing no markup with the default
of American English.

Long ASCII documents that do not need to be hyphenated load
much faster with a language of No Dictionary.

You can specify kerning properties at the component level or at the
text level. You cannot specify these kerning properties for a
component master at the <!Class,...> level.

The following track kerning property values correspond to the menu
selections in Interleaf 7:

Menu Value Meaning Kerning Markup Value

T1 tight K1

T2 tighter K2

T3 tightest K3

T4 loose K4

T5 looser K5

T6 loosest K6

Kerning

ASCII Format for Text

2−52�Interleaf 7

I�I

Pair kerning is on by default, so you do not have to specify it. You
specify Pairs off with the letter P.

Kerning is a text property of the font. An @ always precedes the
kerning property.

Some examples of specifying kerning properties on instances of a
para component are:

normal (track off, pair on) <para, ..., Font = F5, ...
pair kerning off, track off <para, ..., Font = F5@P, ...
T1 <para, ..., Font = F5@K1, ...
T2 <para, ..., Font = F5@K2, ...
T3 <para, ..., Font = F5@K3, ...
L1 <para, ..., Font = F5@K4, ...
L2 <para, ..., Font = F5@K5, ...
L3 <para, ..., Font = F5@K6, ...

Some examples of kerning changes for a range of text are:

pair kerning off <F7@P>
tight track kerning <F7@K1>
tighter track kerning <F7@K2>
tightest track kerning <F7@K3>
loose track kerning <F7@K4>
looser track kerning <F7@K5>
loosest track kerning <F7@K6>

Markup for text properties cannot be added to a default <F0> font
token.

</F> Command:;:Previous Font

The </F> command causes the font to revert to that used
previously in the component. It is not possible to revert to a font in
another component.

You use this command only on input; when you save a document,
Interleaf 7 converts the </F> command to a numbered font.

Sixteen levels of fonts are allowed within a component. The stack of
fonts is reset at the beginning of each component.

Kerning as a
Text Property
of the Font

Note

Commands

I�I

File Formats�2−53

<FI> Command:;:Italic

The <FI> command specifies a font change to italic in the current
type family, if an italic font exists for that family. You terminate this
command with </F>.

You do not have to declare the resulting font in the
<!Font Definitions, ...> declaration.

<FB>Command:;:Bold

The <FB> command specifies a font change to bold in the current
type family, if a bold font exists for that family. You terminate this
command with </F>.

You do not have to declare the resulting font in the
<!Font Definitions, ...> declaration.

<FBI> Command:;:Bold Italic

This command specifies a font change to bold italic in the current
type family, if a bold−italic font exists for that family. You terminate
this command with </F>.

You do not have to declare the resulting font in the
<!Font Definitions, ...> declaration.

<FJ> Command:;:Force−Justify

The <FJ> command specifies a force−justify return. You use it at
the end of a line to force the text before it to fill the entire line
width. It has the properties of a hard return unless the component
has justified alignment.

ASCII Format for Text

2−54�Interleaf 7

I�I

<Frame, ...> Command

The markup for the <Frame, ...> command is identical to that for
the <!Master Frame, ...> declaration with the following exceptions
(markup common to both <Frame, ...> and <!Master Frame, ...>
has been omitted).

<Frame,
@attribute=value, (see User−Defined Attributes in this chapter)
Hidden = Yes, (see User−Defined Attributes in this chapter)
Page # = n,
Anchor Visible = Yes/No
Force Hidden = Yes/No
Overlap = Yes/No
Not Selectable = Yes/No
No Border = Yes/No
>

The <Frame, ...> command repeats the full complement of
properties declared under <!Master Frame, ...>, not just those that
differ from the master frame declaration. Also, defaults are taken
not from the master, but from the defaults listed in Appendix A,
Default Values for ASCII Format Documents.

If Contents = Shared is specified in the <Frame, ...> command, do
not include markup for the diagram in the command. Put this
markup in the declaration for the master frame with the same
name.

In the markup for all frames except header/footer and At Anchor
frames, there is the entry Page # = n, where n is the number of the
page, including any prefix that is present, that contains the anchor.

Page number values will appear on output but have no effect on
input.

If a document has a hidden frame, table row, or other component
when you save, the ASCII dumper outputs Hidden = Yes as a
property for that document element.

Output filter programs can search for Hidden = Yes to eliminate all
hidden document elements. Document elements that are part of a
master’s content can also take a Hidden = Yes specification. These
elements include a frame that is part of the contents of a master
component. If a frame is marked Hidden = Yes, there is no
Page# = n property for the frame.

Hidden =Yes/No

Commands

I�I

File Formats�2−55

Both Hidden = Yes and Hidden = No are ignored by the Interleaf
ASCII loader.

When Anchor Visible is set to No, the anchor securing a frame does
not appear on the text page following input.

If Force Hidden is specified as Yes, the frame and its contents will
not be visible on the text page following input.

When Overlap is set to Yes, the frame can be positioned so as to
overlay other text.

When Not Selectable is set to Yes, the frame cannot be selected for
editing.

When No Border is set to Yes, the bounding box of the frame is not
displayed.

<HR> Command:;:Hard Return

The <HR> command represents a hard return.

<SR>:;:Soft Return

<SR> is the Interleaf markup designation for a soft return.

Soft returns are ignored by the ASCII loader. They occur in files
dumped by the ASCII dumper to indicate the places in the
document where lines breaks occur. Line breaks are recomputed
when the file is loaded.

<!Include, ...> and <!Include Declarations, ...> Commands

Although <!Include, ...> and <!Include Declarations, ...> look like
declarations, they are classified as commands. You can use the
<!Include Declarations, ...> command at the beginning of a file to
incorporate a set of declarations. You can use the <!Include, ...>
command throughout a file to incorporate other files into the
current file. Refer to the chapter The Include Commands for details.

Anchor Visible

Force Hidden

Overlap

Not Selectable

No Border

ASCII Format for Text

2−56�Interleaf 7

I�I

<Index, ...> Command

The <Index, ...> command creates an index token. Index tokens are
inserted in text where the index reference begins. You can specify
other markup between Heading and the closing angle bracket (>),
including the range of text that the index token covers.

The markup for the <Index, ...> command is as follows:

<Index, Heading
Doc = string, (Index Document Name)
Dictionary = am (two-letter language dictionary code)
Autonumber Stream = name
Page Number Stream Name = name
Style Fun = “Lisp style function”
Style Name = “Lisp style function name”
Page# Sep = “Markup to separate page numbers”
Lisp = Any Lisp on the Top Level Index Heading
“Headings”
Sort, Sort String = sort string for that heading
Lisp = Any Lisp on that heading
Typeface = bold/italic

Count = n, (number of components included in range)
Pages = n
To Named = component name, (where reference ends)
See, See Also = entry name,
To Next = (range to next component),

Lisp = Any lisp on index token>

Heading is the text of an index entry. There can be spaces in Heading
entries, but quotation marks are not strictly necessary as they are
elsewhere in ASCII markup. Quotation marks are necessary,
however, if you used any of the other characters discussed in
Quoting Conventions in the chapter ASCII Format Basics. Use
quotation marks to distinguish Headings from other markup.

Range determines the pages associated with an entry; it can also
create a cross−reference.

� This Page is the default; no further markup is necessary.

� If range is To Next, the markup is To Next, which means the
range of the entry ends with the next component.

� If range is Count, the markup must include the number of
components to be included in the reference (Count = n).

Headings

Range

Commands

I�I

File Formats�2−57

� If range is To Named, the markup must include the name of the
component at whose next instance the reference ends
(To Named = component name).

� If the range is See or See Also, the markup must include the
name of the entry to which you are referring.

Other properties you can include in an index token command are

� a Sort or Sort String property to define a customized sort string;
when you use Sort or Sort String, the entry must follow the
corresponding Heading entry.

� a Doc property to designate a special Index Document name; this
corresponds to the Index Document field on the Custom sheet of
the Index Properties dialog box.

� an Index property if you want the index to have a name other
than index. This string is accessible from the Create Index dialog
box, in the Index Document Properties dialog box .

� a Typeface property to designate a different weight or slant for
the reference; the default font for index entries is a 10−point
roman typeface.

� a Dictionary entry to designate the language dictionary for the
index; the xx value can be any of the two−letter language codes
described in Text Properties in this chapter. The default is am.

<|, ...>,CPage Break Command

The <|, string> command indicates a page break. String is the page
number including any prefix content.

For example, <|,2> denotes page 2 in Arabic numerals without a
prefix; <|,”Page 2”> denotes page 2 with a prefix; and <|,ii>
denotes page 2 in lowercase roman numerals without prefix content.

In the markup for all frames except header, footer, and At Anchor
frames, there is the entry Page # = n, where n is the page number,
including any prefix content. These page numbers appear only when
you save a document in ASCII with Interleaf 7. They are ignored
when the document is loaded.

Other Index
properties

ASCII Format for Text

2−58�Interleaf 7

I�I

The <|, ...> page token markup appears immediately before the
first character (or frame, tab, or other marker) on each page. If
your component starts a page, the <|, ...> appears after the
component header and before the first character. If a component
starts a page and the component starts with a hidden inline
component,
<|, ...> precedes the hidden inline component. Alternatively, if a
hidden inline component sits at a line break, the <|, ...> markup
follows it unless there is a <HR> or <FJ> token before the hidden
component, in which case the <|, ...> follows the <HR> or <FJ>.

The page break command does not force a page break. It is ignored
by the Interleaf ASCII loader. It is useful in filters that interpret
Interleaf ASCII markup since it indicates where page breaks occur.
The only way to force a page break is with the Component property
Begin New Page = Yes.

Do not confuse the <|, ...> command with the <|:> command.
The <|:> command indicates a prefix component, not a page
break.

<Page Header, ...> and <Page Footer, ...> Commands

If you do not include any header or footer information in your
markup, the ASCII loader uses the defaults, and you can add the
text you want with Interleaf 7. When using a filter to create an
Interleaf document, leaving out header and footer information and
entering it interactively is the simplest and most practical way to
handle headers and footers.

A document can have only one page header command (or set of
page header commands). This header remains in effect for the
entire document; you cannot change it in the middle.

The page header command(s) determine the format for all pages,
an optional special first page that is different, or for left and right
pages for double sided documents. These commands are:

<Page Header (Footer), Frame = ...> indicates that the document is
to be printed in single−sided format and that the first page has the
same header or footer as the rest of the document.

Note

Note

Commands

I�I

File Formats�2−59

<First Page Header (Footer), Frame = ...> indicates that the first
page has a different header or footer from the rest of the document.

<Right Page Header (Footer), Frame = ...> indicates that the
document is to be printed in one of the double−sided formats and
that this is the header or footer for the right−hand pages.

<Left Page Header (Footer), Frame = ...> indicates that the
document is to be printed in one of the double−sided formats and
that this is the header or footer for the left−hand pages.

For details about the markup inside frames, see the chapter ASCII
Format for Graphics Objects.

Once you declare a value for the Turned Page property in the
<!Page..> declaration, you can declare the header and footer
rotation as clockwise or counterclockwise. For the Rotation property
in the <Page Header> and <Page Footer> commands, you specify
90 for clockwise rotation and 270 for counterclockwise rotation. The
value for the Rotation property in <Page Header, ...> and
<Page Footer, ...> must match the value that you specified for
the Turned Page property of the <!Page..> declaration.

<SP> Command:;:Hard Space

In Interleaf ASCII markup, only the hard space has a special
command: <SP>.

Markup for em, en, hairline or thin spaces follows the procedures
used for special characters. See Special Characters in this chapter
and Appendix C, Hexadecimal Codes, for more information.

<Tab ...> Command

Interleaf 7 has five types of tab stops: left, right, center, numeric,
and decimal. There are five kinds of tab appearances: blanks, dots,
lines, underlines, and dashed tabs.

The tab stops are indicated in the <!Class, ...> declarations for each
component master. Tab appearances are indicated by commands in
text. The tab commands cause the text to move to the next tab stop.

Depending on the tab command used, the tab space is left blank or
filled with dots (....), lines (N), underscores (__), or dashes (−−−).

Rotated Headers
and Footers for
Turned Pages

Other spaces

ASCII Format for Text

2−60�Interleaf 7

I�I

The ASCII format commands that determine tab display are

� <Tab> for blanks (−−−−−>) (You may see an arrow on the
screen to indicate a blank tab, but it will not appear in a printed
document.)

� <Tab.> for dots (). . .

� <Tab−> for lines ()

� <Tab_> for underlines ()

� <Tab−dash> for dashed tabs (−−−)

Tabular material prepared outside Interleaf 7 conventions might
require some cleanup. If you are using a fixed−width font (a type
family in which each character occupies an equal amount of space
on a line) for tables, there might be a difference between the
amount of horizontal space you expect the characters to occupy and
the space they actually require in Interleaf 7.

The difference might be more noticeable if your tables were created
with a fixed−width type family and Interleaf 7 converts them to a
proportional type family, in which characters occupy varying
amounts of horizontal space.

The ASCII tab character in a file is treated the same way as
<Tab ...>.

Special Characters: the <#xx> Command

The <#xx> command represents the hexadecimal value of special
characters such as vowels with acute, grave, and circumflex accents.
The xx represents two to four hexadecimal digits. For example, ã is
represented in Interleaf ASCII markup as <#e3>.

The first step in creating markup for a special character is
determining the associated hexadecimal code, which consists of a
two−digit number or a number and letter. For a list of these codes,
refer to Appendix C, Hexadecimal Codes.

Note

Commands

I�I

File Formats�2−61

User−Defined Attributes

You can specify user−defined attributes and values for various
document elements. User−defined attributes are part of the
Conditional Content and Attributes features of Interleaf 7. You
distinguish user−defined attributes from ordinary properties by
preceding the attribute name with the @ symbol.

The generic specification for a user−defined attribute is

@attribute = value,

For example:

@author = joyce,

User−defined attributes should appear at the beginning of the list of
properties and values for a declaration or command. Individual
instances of a component must also be tagged for the attribute.

In Conditional Content control, user−defined attributes can have
multiple values. You specify attributes that have multiple values as
follows:

@attribute = value1,
@attribute = value2,
@attribute = value3, ...

For example:

@platform = Sun,
@platform = ”DEC ULTRIX”,
@platform = ”DEC VMS,”
@platform = HP,
@platform = Apollo,

You never specify a user−defined attribute without a value.

User−defined attributes and values can contain spaces and special
characters; use the ASCII format quoting conventions.

You can specify user−defined attributes and values for document
components, frames, inline components, and table rows. You can
also specify user−defined attributes and values for microdocument
components and microdocument inline components. Named
graphics objects also take attributes and values.

ASCII Format for Text

2−62�Interleaf 7

I�I

There is no ASCII format for defining the attribute type as either
string or enumerated. You specify attribute type interactively in
Interleaf 7. If you enter a new user−defined attribute in ASCII
format, it has the default characteristics of String Type and Max
Number of Values = 1.

In ASCII format, a user−defined attribute specification on the
master is not created automatically for the instance. If an instance
has user−defined attributes, you must specify them with the instance
even though they were specified on the master. If you do not specify
a user−defined attribute for the instance, the default is no
user−defined attributes.

For example, the <!Class, ...> declaration for the bullet component
has a user−defined attribute in the list of properties and values as
follows:

 <!Class, bullet,
@annotated = Yes,
Top Margin = 0.04 inches,
Bottom Margin = 0 .04 inches,
Left Margin = 0.75 inches,
Right Margin = 0.75 inches,
Line Spacing = 1.162 lines,
Font = F14,
Left Tab = 0/0.50*3 Inches,
Composition = Optimum,
Contents = Prefix>

Even though the user−defined attribute, @annotated = Yes, is
specified on the master in the <!Class, ...> declaration for the bullet
component, you must specify it again in the <component, ...>
command for the instance of the bullet component as follows:

<bullet,
@annotated = Yes,
Font = F18>

Note

Commands

I�I

File Formats�2−63

<Comment ...> Command

You can insert comments into markup with the <Comment...>
command. These comments do not appear when you display the
document in Interleaf 7; the ASCII loader eliminates them. This
means that if you resave the document in ASCII format, the
comment is lost.

The loader ignores everything between <Comment, ... and the
closing angle bracket (>) in the comment command.

If you have embedded matching angle brackets (<...>) within the
comment, the loader treats them as part of the comment.

If a component with no content except for a soft space is saved in
ASCII format, <Comment> appears in the output file. This insures
that should the file be transmitted using a UUCP mailer, the empty
component is not interpreted as an end−of−file.

Note

I�I

File Formats�3−1

This chapter describes the Interleaf ASCII format for tables. It also
describes the properties you can specify for tables.

A table is similar to a series of components in the general structure
of a document. It differs from a series of components, however, in
that it has a distinct internal structure. A table contains columns,
rows, and cells.

Each table has its own set of master rows. Columns, however, do
not have masters. Cells grow and shrink to fit their contents. Cells
can adjust to align themselves with other cells in the row and
column. Columns can have fixed width or proportional width.
Proportional−width columns change width to take into account
changes to the widths of other columns.

ASCII Format for Tables

ASCII Format for Tables

3−2�Interleaf 7

I�I

Table Declarations and Commands

<!Master Table, ...> Declaration

The <!Master Table, ...> declaration for a table is similar to the
<!Class, ...> declaration for a component. The <!Master Table, ...>
declaration specifies the general form and properties of a table.

An instance of a table generally uses the properties of its master as
defaults. If the instance has more columns than its master, the
additional columns use the column default values. For these and
other table default values, see Appendix A, Default Values for ASCII
Format Documents.

Table Declarations and Commands

I�I

File Formats�3−3

The markup for the <!Master Table, ...> declaration is as follows:

<!Master Table, name,
@attribute = value,
A-Page = Yes/No,
Allow Page Break After = Yes/No,
Allow Page Break Within = Yes/No,
Allow Page Break Before = Yes/No,
Begin New Column = Yes/No,
Begin New Page = Yes/No,

Column N Width = x inches,
or

Column N Width = x units,
or

Column N Width = x units + x inches,

Column N Top Ruling Visible = Yes/No,
Column N Left Ruling Visible = Yes/No,
Column N Top Ruling Weight = 0.125 to 6.125 [1] Double,
Column N Left Ruling Weight = 0.125 to 6.125 [1] Double,
Top Margin = x inches [0.08 inches],
Bottom Margin = x inches, [0.08 inches],
Left Margin = x inches [0],
Row = name,
Rulings to Bottom = Yes/No
Table Page Break Rulings = None/Top/Bottom/Both,
Straddle = Yes/No,
Orphan Control = 1 - 16 [2 rows],
Widow Control = 1 - 16 [2 rows],
Top Border Visible = Yes/No,
Bottom Border Visible = Yes/No,
Left Border Visible = Yes/No,
Right Border Visible = Yes/No,
Header Border Visible = Yes/No,
Footer Border Visible = Yes/No,
Top Border Weight = 0.125 to 6.124 [1] Double,
Bottom Border Weight = 0.125 to 6.124 [1] Double,
Left Border Weight = 0.125 to 6.124 [1] Double,
Right Border Weight = 0.125 to 6.124 [1] Double,
Header Border Weight = 0.125 to 6.124 [1] Double,
Footer Border Weight = 0.125 to 6.124 [1] Double
Top Border color = n,
Bottom Border color = n,
Left Border color = n,
Right Border color = n,
Header Border color = n,
Footer Border color = n>

ASCII Format for Tables

3−4�Interleaf 7

I�I

Tables may now have user−defined attributes.

The A−Page property is for internal use only. Do not specify it.

When Allow Page Break Within is set to Yes, Interleaf 7 can put part
of the table on one page and part of it on the next page as long as
this does not violate the widow/orphan settings for the table. If
Allow Page Break Within is set to No, the table will not break across
page boundaries. In multicolumn documents, the Allow Page Break
Within setting also determines whether a table breaks across
columns on the same page.

When Allow Page Break Before/After is set to Yes, Interleaf 7

determines page breaks. When Allow Page Break Before/After is set
to No, the software does not permit a page break between a table
and the preceding or following component. In multicolumn
documents, the Allow Page Break Before/After setting also
determines whether a column break is permitted to occur before or
after a table begins.

If set to Yes, the Begin New Page property forces the table to begin
on a new page. You can also force a table in a multicolumn
document to begin a new column by setting Begin New Column to
Yes. The Begin New Column property does not apply to
single−column documents.

On input, if the <Table, ...> command or <!Master Table, ...>
declaration does not have Columns = n, Interleaf 7 derives the
number of columns from the master. If there is no master, the
number of columns is 1. The software then raises this number to the
highest column number specified in any of the Column N properties,
such as the column number specified in Column N Width.

These are the properties for fixed−width columns. The Column N
properties refer to a column by a number N. Columns are numbered
starting on the left from column number 1.

Column N Width determines the width of column N. For example,
Column 3 Width specifies the width of the third column from the left
in the table.

Attribute

Table A−Page

Table Allow
Page Break

Table Begin New

Columns

Column N
Properties
(Fixed−Width)

Table Declarations and Commands

I�I

File Formats�3−5

On input, you can use Column N Top Ruling Visible, Column N Left
Ruling Visible, Column N Top Ruling Weight, and Column N Left
Ruling Weight in both <Table, ...> and <!Master Table, ...> markup.
If a table’s column rulings differ from its master’s, the individual
cells reflect this difference with the Left Ruling and Top Ruling
properties.

When Column N Ruling Weight is specified, it implies that Column N
Ruling Visible is set to Yes. Specifying Double for Column N Top
Ruling Weight, and Column N Left Ruling Weight as optional, makes
a double ruling of the specified weight.

If you specify Column N Width, the column rulings for that column
are reset to the default values. Thus, Column N Width must precede
every Column N Ruling Weight for column N.

A proportional−width table allows specified columns to adjust in
width if there are any changes made in width by any other column
or margin. Adjustment is proportional to the width of the entire
table. Columns marked as proportional−width are declared in units
rather than inches.

Top Margin determines the distance between the table and the
component above the table. Bottom Margin determines the distance
between the table and the component below. Top Margin has no
effect at the top of a page; Bottom Margin has no effect at the
bottom of a page. Left Margin determines the distance from the left
page margin to the left edge of the table.

You use the Row property only in master tables. On input, you must
list in the master the name of each row in the table. The order of
row entries is significant and must reflect the order in which they
appear in the master.

On output, there is one Row entry for each row you created
interactively with the Create� Table� tablename command. See the
sample table markup for examples of how to specify rows in the
master.

Proportional−Width

Table Margin

Table Row

ASCII Format for Tables

3−6�Interleaf 7

I�I

The Table Page Break Rulings property determines whether table
rulings appear at page breaks. Table Page Break Rulings are printed
at the top of the page if Top is specified and at the bottom of the
page if Bottom is specified. With None specified, no rulings are
printed; with Both specified, top and bottom rulings appear.

This property specifies whether table ruling goes to the bottom of
the page. This is the military specification (milspec) treatment of
tables where the outside rulings fill the page no matter where the
rows stop. The default is No.

The Straddle property determines whether a table extends
horizontally across the entire text area of a multicolumn document.
If Yes is specified, the table spans the entire width of the text area.

The Straddle setting has no effect on tables in a single−column
document. In a single−column document, if a table is wider than the
column, it soft−straddles. A soft straddle is the same as a straddle,
but the table does not need a Straddle = Yes specification.

In a single−column document, Orphan Control and Widow Control
settings determine the number of rows in a table that can appear at
the top and bottom of a page. In a multicolumn document, these
settings determine the number of table rows that can appear at the
top and bottom of a column. You can set a value from 1 to 16.

The Border Visible properties determine whether table borders are
visible.

The Border Weight properties determine the thickness of the table
borders. The thickness increases from 0.125 to 6.125 points in
increments of 0.125 points. Double, which is optional, makes double
borders around the table. When Border Weight is specified, Border
Visible is assumed to be Yes.

The Border Color properties determine the color of the borders. The
values are the colors defined in the <!Color Definitions....>
declaration for the document (see ASCII Format for Text). The
range for color designation codes is 0 to 255.

Table Page
Break Rulings

Rulings to
Bottom Property

Table Straddle
Property

Table Widow and
Orphan Control
Properties

Table Border
Properties

Table Declarations and Commands

I�I

File Formats�3−7

<Master Row, ...>Declaration

<Master Row, ... > is a declaration, since it creates a master. Each
table has its own set of master rows.

Unlike other declarations, which use the <!... > format, the master
row declaration is enclosed only between angle brackets.

The markup for a typical master row is as follows:

<Master Row, name,
A-Page = Yes/No,
Allow Page Break After = Yes/No,
Allow Page Break Before = Yes/No,
Allow Page Break Within = Yes/No,
Begin New Column = Yes/No,
Begin New Page = Yes/No,
Bottom Margin =x inches [0.0266 inches],
Top Margin = x inches [0.0266 inches],
Font = font,
Header = Yes/No,
Footer = Yes/No,
Read Only = Yes/No,
Border = Yes/No,>

The A−Page = Yes/No property is for internal use only; do not
specify it.

The Begin New Page and Allow Page Break After properties
determine whether a row should begin a new page and whether a
page break can occur after the row. Allow Page Break Before
determines whether a page break can occur before the row. Allow
Break Within permits spillover of table cell data onto the following
page. The Begin New Column property in a multicolumn document
indicates whether a row should begin a new column. You use these
properties with rows the same way you use them with components.

The top margin of a row is the area just below the row’s top ruling;
the bottom margin is the area just above the row’s bottom ruling. If
you change the weight of a ruling, the size of the row margins does
not change.

If a row has a revision bar, the Font property determines the font
used in it.

Row A−Page

Row Page Break

Row Margin

Row Font

ASCII Format for Tables

3−8�Interleaf 7

I�I

The row Header property determines whether a row is the running
header for a table. The row Footer property determines whether a
row is the running footer for a table.

The Border property specifies whether the row has border rulings.

<Table, ...> Command

The <Table, ...> command properties are the same as the
properties on the <!Master Table, ...> declaration. The name of the
table must be the first field in the ASCII markup for the <Table,
...> command. The properties for an instance of a table come from
the master table; for properties not specified on the master, the
instance takes the system defaults for tables. For a list of defaults
refer to Appendix A, Default Values for ASCII Format Documents.

<Row, ...> Command

The properties for the <Row, ...> command are identical to the
properties on the <!Master Row, ...> declaration. Refer to The
<!Master Row, ...> Declaration in this chapter for details. Hidden
and Read−Only are special properties that can be declared for row
instances.

On the row instance, you can specify user−defined attributes and
values and you can hide entire rows, depending on the control
expression in effect. If the row is hidden according to the control
expression in effect, the row has a specification of Hidden = Yes on
output. The Hidden property is for output only; the loader ignores
the Hidden property on input.

These properties are specified on the row instance as follows:

@attribute = value,
Hidden = Yes,

Both Hidden = Yes and Hidden = No are ignored by the Interleaf
ASCII loader.

Read Only = On freezes the contents of the row. No editing
operations may be performed until this property is set to Off.

Row Header
and Footer

Border

Hidden = Yes/No

Read Only

Table Declarations and Commands

I�I

File Formats�3−9

<Cell, ...> Command

The markup for <Cell, ...> is as follows:

<Cell,
@attribute = value
Auto Edit = Yes/No,
Top Ruling Weight = 0.125 - 6.125 Double,
Top Ruling Color = 0-255,
Top Ruling Visible = Yes/No,
Left Ruling Weight = 0.125 - 6.125 Double,
Left Ruling Color = 0-255,
Left Ruling Visible = Yes/No,
Size Contents To Width = Yes/No,
Straddle = n [1],

or
Straddle = vertical,
Vertical Alignment = Top/Bottom/Center,
Color = 0-255,
Pattern = 0-255,
Not Selectable = Yes/No,
Read Only = Yes/No>

You can use a <Frame, ...> command in place of a <Cell, ...>
command; it is especially useful when you have a graphics object
within a cell. In Figure 3−2, the last cell is a frame containing a
graphics object.

You can change a cell’s microdocument page properties (the
equivalent of making changes to the microdocument’s Page
Properties dialog box) by including a <!Page,...> declaration Within
a <Cell, ...> command. For example, the following command,

<Cell> <!Page,
Hyphenation= off>

<”2x2:cell”>

turns off hyphenation on the microdocument Page Properties dialog
box for this cell. For more information about the<!Page...>
declaration, refer to the chapter ASCII Markup for Text.

Note

ASCII Format for Tables

3−10�Interleaf 7

I�I

If you use a <Frame, ...> command in place of a cell, you can use
the following additional markup as well as the property values used
in markup for <Cell, ...>. The results will be unpredictable, or a
crash may occur, if you use options other than the regular cell
markup and the following in the additional markup for <Frame,...>:

<Frame, ...>:
Size Contents to Height = No,
Vertical Alignment = Top,

To include graphics in a cell, invoke the Graphics Editor by setting
Auto Edit to No. By default the setting for Auto Edit is Yes, which
invokes the Object Editor.

The Left Ruling Visible and Top Ruling Visible properties determine
whether the left and top cell rulings are visible. The Left Ruling
Weight and Top Ruling Weight properties control the weight of the
left and top rulings of a cell and whether these rulings are double
rulings. The range of weights is 0.125 to 6.125 points in increments
of 0.125 point.

The Left Ruling Color and Top Ruling Color properties control the
color of the left and top rulings of a cell. At the intersection of
rulings, the visibility, color, and weight of the horizontal ruling takes
precedence over the settings for the vertical ruling.

The cell Straddle property controls how many columns a cell can
straddle horizontally. The default is 1.

In Interleaf 7, cells may also straddle vertically, although the default
is horizontal. See Sample Table in this chapter for an illustration of
the markup for vertical straddles.

The Vertical Alignment property determines the vertical alignment of
the data in a cell. The values are Top, Bottom, and Center.

Background color and pattern information may be included in
markup. Numerical values for color and pattern assignment are
given in <Color Definitions, ...> in the chapter ASCII Format for
Text.

Note

Cell Auto Edit

Cell Ruling

Cell Straddle

Cell Vertical
Alignment

Cell Background
Color and Pattern

Table Declarations and Commands

I�I

File Formats�3−11

If Not Selectable is set to Yes for a cell or set of cells, they cannot be
selected interactively with Interleaf 7. A setting of Yes in effect
freezes the contents of the cells to editing operations.

Read Only = On transforms a cell into a read−only cell.

Sample Tables

The ASCII markup for a basic table is straightforward, but table
markup can become complex.

The following is an example of markup for a simple table:

<Table, tablename ..., Columns = 3, Column 1 Width = 1 inch, ...>
<Master Row, master_row_name>
<Cell> <Cell> ... <Cell> ...
<Row, row_name>
<Cell> ... <Cell> ... <Cell> ...
<End Table>

Table markup must conclude with the <End Table> command.

Figure 3−1 shows an empty 3−by−3 table created in a generic empty
document using the Create� <Table>� <Numeric> command.

 F i g u r e 3 − 1 . E m p t y t a b l e .

Cell Not
Selectable

Cell Read Only

Sample 1: Empty
3x3 Table

ASCII Format for Tables

3−12�Interleaf 7

I�I

The following are the Master declarations for the table in
Figure 3−1:

<!Master Table, ”3x3”,
 Columns = 3,
 Column 1 Width = 1 units,
 Column 2 Width = 1 units,
 Column 3 Width = 1 units,
 Row = ”row”,
 Row = ”row”,
 Row = ”row”>

<Master Row, ”row”>

<Cell><”3x3:cell”,
 Hidden = yes>

<Cell><”3x3:cell”,
 Hidden = yes>

<Cell><”3x3:cell”,
 Hidden = yes>

<End Table>

Table Declarations and Commands

I�I

File Formats�3−13

Table instance markup for the table in Figure 3−1 begins here:

<Table, ”3x3”,
 Columns = 3,
 Column 1 Width = 1 units,
 Column 2 Width = 1 units,
 Column 3 Width = 1 units>

<Master Row, ”row”>

<Cell><”3x3:cell”,
 Hidden = yes>

<Cell><”3x3:cell”,
 Hidden = yes>

<Cell><”3x3:cell”,
 Hidden = yes>

<Row, ”row”>
<Cell><”3x3:cell”>

<Cell><”3x3:cell”>

<Cell><”3x3:cell”>

<Row, ”row”>
<Cell><”3x3:cell”>

<Cell><”3x3:cell”>

<Cell><”3x3:cell”>

<Row, ”row”>
<Cell><”3x3:cell”>

<Cell><”3x3:cell”>

<Cell><”3x3:cell”>

<End Table>

ASCII Format for Tables

3−14�Interleaf 7

I�I

The sample table in Figure 3−2 has more complex markup, including
rulings of various types, vertical and horizontal straddle cells, and
graphic objects within a cell. Following the table is the relevant
portion of the ASCII markup for a document containing this table.

The two columns directly below have proportional width; that is,
their width will adjust proportionally to the entire width of the table if any

change in
width is made in any other column or margin.

This column
has fixed

width.

centered and
vertically
straddled

This row illustrates vertical alignment. This cell is top aligned (the
default). The other cells are centered and bottom aligned.

The cell
below has
color fill.

straddled
The ruling above this cell is double width.

This footer row straddles 2 columns. The cell to the right has a diagram:

 F i g u r e 3 − 2 . S a m p l e t a b l e

The following are the Master declarations for the table in
Figure 3−2:

<!Master Table, ”3x3”,
Columns = 3,
Top Margin = 0.09 Inches,
Bottom Margin = 0.09 Inches,
Top Border Weight = 2,
Bottom Border Weight = 2,
Left Border Weight = 2,
Right Border Weight = 2,
Column 1 Width = 1 Inches,
Column 2 Width = 4 Inches,
Column 3 Width = 1 Inches,
Row = ”title”,
Row = ”head”,
Row = ”row”,
Row = ”row”,
Row = ”row”,
Row = ”row”,
Row = ”row”,
Row = ”foot”>

<Master Row, ”foot”,
Top Margin = 0.03 Inches,
Bottom Margin = 0.03 Inches,
Footer = yes>

Sample 2:
Complex Table

Table Declarations and Commands

I�I

File Formats�3−15

<Cell, Straddle = 2><”3x3:foot”,

Hidden = yes,
Font = F16@Z7,
Line Spacing = 1.0435 lines>

<Cell><”3x3:foot”,
Hidden = yes,
Font = F16@Z7,
Line Spacing = 1.0435 lines>

<Master Row, ”row”,
Top Margin = 0.03 Inches,
Bottom Margin = 0.03 Inches>

<Cell><”3x3:left”,
Hidden = yes,
Font = F16@Z7,
Line Spacing = 1.0435 lines>

<Cell><”3x3:middle”,
Hidden = yes,
Font = F16@Z7,
Line Spacing = 1.0435 lines>

<Cell><”3x3:right”,
Hidden = yes,
Font = F16@Z7,
Line Spacing = 1.0435 lines>

<Master Row, ”title”,
Top Margin = 0.03 Inches,
Bottom Margin = 0.03 Inches,
Allow Page Break After = no,
Header = yes>

<Cell, Straddle = 3><”3x3:title”,
Hidden = yes,
Font = F22@Z7,
Line Spacing = 1.1205 lines>

<End Table>

Table instance markup begins here:

<Table, ”3x3”,
Columns = 3,
Top Margin = 0.12 Inches,
Bottom Margin = 0.12 Inches,
Left Margin = 1 Inches,
Allow Page Break Within = no,
Top Border Weight = 4,
Bottom Border Weight = 4,
Left Border Weight = 4,
Right Border Weight = 4,
Header Border Weight = 4,

ASCII Format for Tables

3−16�Interleaf 7

I�I

Footer Border Weight = 4,
Column 1 Width = 1 units,
Column 2 Width = 4 units,
Column 3 Width = 0.95 Inches>

<Master Row, ”title”,
Top Margin = 0.03 Inches,
Bottom Margin = 0.03 Inches,
Allow Page Break After = no,
Header = yes>

<Cell, Straddle = 3,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:title”,
Hidden = yes>

<Master Row, ”row”,
Top Margin = 0.03 Inches,
Bottom Margin = 0.03 Inches>

<Cell,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:left”,
Hidden = yes,
Line Spacing = 1.1044 lines>

<Cell,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:middle”,
Hidden = yes,
Line Spacing = 1.1044 lines>

<Cell,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:right”,
Hidden = yes>

<Master Row, ”foot”,
Top Margin = 0.03 Inches,
Bottom Margin = 0.03 Inches,
Footer = yes>

<Cell, Straddle = 2,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:foot”,
Hidden = yes>

Table Declarations and Commands

I�I

File Formats�3−17

<Row, ”title”><|,”1”>
<Cell, Straddle = 2,

Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:title”,
Font = F8@Z7,
Line Spacing = 1.1004 lines>

The two columns directly below have proportional width; that
is,<HR> their width will adjust proportionally to the entire
width of the table if any change in <SR> width is made in any
other column or margin.

<Cell,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:title”,
Font = F8@Z7,
Line Spacing = 1.1004 lines>

this column <SR>
has fixed <SR>
width

<Row, ”row”>
<Cell, Vertical Alignment = Center,

Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:left”,
Line Spacing = 1.1044 lines>centered and <SR>

vertically <SR>
straddled

<Cell,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:middle”,
Line Spacing = 1.1044 lines>

This row illustrates vertical alignment. This cell is top
aligned <SR> (the default). The others are centered and
bottom aligned.

<Cell, Vertical Alignment = Bottom,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:right”,
Alignment = Outer>

The cell <HR>
below has<HR>
color fill.

ASCII Format for Tables

3−18�Interleaf 7

I�I

<Row, ”row”>
<Cell, Straddle = Vertical, Vertical Alignment = Center,

Top Ruling Weight = 1.5,
Left Ruling Weight = 2>

<Cell,
Top Ruling Weight = 1.5 double,
Left Ruling Weight = 2><”3x3:middle”,
Line Spacing = 1.1044 lines>

The ruling above this cell is double width.

<Cell,
Color = 5,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:right”><Row, ”foot”>

<Cell, Straddle = 2,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2><”3x3:foot”>

This footer row straddles 2 columns. The cell to the right
has a diagram:

<Frame,
Top Ruling Weight = 1.5,
Left Ruling Weight = 2,
Diagram =

V8,
(g9,1,0
(T15,1,0,-0.04,0,0,127,0,0,127,1,0,3,
<!Page, Width = 0.9116813 Inches, Height = 0.13837 Inches>
<”3x3:foot”>

<End Text>)

(e9,2,0,0.1135718,0.127334,0.7181104,0.127334,0.1135718,0.006
0002,7,127,5,7,0,1,0)

(E16,0,0,5,1,1,0.0533333,1,15,0,0,1,0.04,0,0,1,7,127,7,0,0,7,
0,1,1,0.0666667,0.0666667,6,6,0,0.0666667,6))>
<End Table>

I�I

File Formats�4−1

This chapter describes the Interleaf ASCII format for graphics
objects, formerly called diagramming objects. Despite this change in
terminology, the term diagramming is still used in the Interleaf
ASCII markup for graphics objects.

This chapter describes general properties, such as locks, edge, and
fill, that apply to all graphics objects. It also describes the
object−specific markup for each graphics object. These fields
represent the properties of the graphics object.

Graphics objects in Interleaf 7 include lines, boxes, arcs, Béziers
(Bézier curves), splines, text strings, microdocuments, outline text,
charts, raster images, and OLE (object linking and embedding)
objects. These objects always appear in a frame.

Starting with Release 5.2, components and graphics objects can have
Interleaf Lisp statements attached upon output. Changes affecting
graphics objects are described in ASCII Lisp Method Storage for
Graphics Objects in this chapter.

Note

ASCII Format for
Graphics Objects

ASCII Format for Graphics Objects

4−2�Interleaf 7

I�I

General Markup Rules

The markup for graphics objects always appears in a <Frame, ...>
command. Except for header and footer frames, the markup for
frames containing graphics objects is similar to this:

<Frame,
Name = Inline,
Placement = At Anchor,
Width = .41 inches,
Height = .137 inches,
Diagram =

V11,
 (g9,0,0,
 (e8,16,0,,0.4,2.1,2.0,1.1,0.3,1.0, 0, 0, 5, 7, 0, 6, 0))>

Following the frame property specifications, information for each
diagram begins with the uppercase letter V, followed by the diagram
version number (11 in the example) and a comma. The graphics
objects follow the version number. You can have any number of
graphics objects in a frame.

All objects in a frame are considered part of a top−level group. In
the example, there is a group object beginning with the letter g and
an ellipse object beginning with the letter e. The top−level group can
contain other groups.

The markup for graphics objects obeys the following syntax:

� a left (opening) parenthesis

� a letter indicating object typeNfor example, g for group

� an object version numberNfor example, 9 for version 9

� a comma

� the z coordinate (an integer)

� a comma

General Markup Rules

I�I

File Formats�4−3

� the general graphic object flags field (32−bit, unsigned, written in
decimal)

starting with Release 5.2 and the V11 diagram version number,
the first field following the flags field is for Interleaf Lisp data.
If no Lisp is present, the field is empty. For more information,
refer to ASCII Lisp Method Storage for Graphics Objects in this
chapter.

� a series of other comma−enclosed fields

The number of fields and the type of fields depend on the object
type.

� a right (closing) parenthesis

Object Type and Version

All graphics objects have two identifiers: a type letter (such as c, g,
N, or O) that indicates type of graphics object, and a version number
that identifies the current version of the graphics object.

Valid object types with their type letters and version numbers are

� group (g9)

� polygon (p8)

� arc (a9)

� spline (S14)

� text string (t14)

� microdocument (T15)

� line (v7)

� plotter (V9)

� chart (c5)

� image (i18)

� Encapsulated PostScript object (n6)

� ellipse (e9)

� edit state object (E16)

� equation object (m9)

ASCII Format for Graphics Objects

4−4�Interleaf 7

I�I

� convert−to−outline object (o4)

� named graphics object (N10)

� Bézier object (z5)

� outline object (C6)

� OLE object (q6)

Letters designating object type are case−sensitive.

The equation object (m9) and the outline object (C6) are not
documented.

Layering

Front/back positioning is determined by the z coordinate.
Overlapping objects with higher z values occlude those with lower
ones.

Locks

The general graphics object flags field contains lock bits. It is a
32−bit unsigned integer, written in decimal. A zero, indicating that
the lock is not set, suffices in most cases.

Note

General Markup Rules

I�I

File Formats�4−5

The following list shows the mapping of the bits in the general flags
field; bit 0 is the least significant bit.

Bit Function

0 no flag bits set
1 lock size
2 lock position
3 lock against rotation
4 lock grouping on
5 lock against selection
6 lock line widths
7 lock fill pattern
8 lock font
9 lock against printing
10 lock against cutting
11 lock gravity off
12 lock control points off
13 lock aspect ratio
14 lock smoothness
15 reserved for system use
16 reserved for system use

The following bits are discarded if the object is being saved with version 3:

17 lock object stickiness
18 reserved for system use
19 reserved for system use
20 reserved for system use
21 lock dash pattern
22 lock fill color
23 lock fill transparency
24 lock edge color
25 lock edge transparency
26 object is hidden
27 pass messages on to Lisp
28 object queued for incremental redisplay
29 GenFree called; free during incremental redisplay

33 number of flag bits + 1

ASCII Format for Graphics Objects

4−6�Interleaf 7

I�I

Edge and Fill Properties

The edge properties consist of four fields: visibility, color, weight,
and dashes. The fill properties are made up of three fields: visibility,
color, and pattern.

The visibility field for edge and fill properties can be either 0
(visible) or 127 (invisible).

The edge weight field is expressed in printers’ points. The minimum
legal width is 0.125; the maximum is 6.125. If a specified edge
weight is too large or too small, it is converted to the nearest legal
value on input.

Figure 4−1 shows the line pattern values and the lines they produce.

 2

 6

 7

 0

 5

 8

 4

 1

 3

 F i g u r e 4 − 1 . L i n e p a t t e r n v a l u e s a n d t h e l i n e s t h e y r e p r e s e n t .

For more information on color and pattern, refer to the sections on
the <!Colors, ...> declaration and the <!Patterns, ...> declaration in
the chapter ASCII Format for Text.

Graphics Error Messages

If the loader finds an error in a diagram when loading a document,
it displays a warning message such as: ASCII Loader Warning on line
29: Error in loading diagram .

General Markup Rules

I�I

File Formats�4−7

The loader skips the contents of the frame and loads an empty
frame. If the loader encounters more than one error in the diagram,
it displays only the first message. For more information about error
messages, refer to Appendix B, ASCII Format Error Messages.

ASCII Lisp Method Storage for Graphic Objects

All graphics objects have a field after the locks or flags field for
storing Lisp code with the object. If no Lisp code is present, there
will be an empty field as shown in the following example:

V11,
(g9,1,0,
 (v7,1,0,,1.0666667, [...]

For both the group (g9) and the vector (v7), 1 represents the z
coordinate and 0 is the locks field. Following each is an empty Lisp
field. In the case of the group, the Lisp field occurs between the
comma and the vector’s left (opening) parenthesis. The Lisp field
for the vector occurs between the two commas.

If the diagramming lock bit (value 0x04000000, decimal 67108864) is
not set, the Lisp field for the group must be empty. The field is
named :allow-lisp-override from Lisp.

With the bit set, executing the following Lisp code:

(tell obj mid:set-props :locks ’(:allow-lisp-override))
(tell obj mid:put-saved-data :foo “()<>”)

results in the following markup:

V11,
(g9,1,0,
 (v7,1,67108864,\(tell\ *load-object*\ mid:put-data
\ ’ileaf::saved-data\ ’\(:foo\”\(\)\<\>\”\)\x0a\),
1.0666667,0.7333333,1.9333333,1.3333333,7,0,1,0)
(E16,0,0,,5,1,1,0.0533333,1,15,0,0,1,0,0,0,1,5,127,
7,0,0,7,0,1,1,0.0666667,0.06
 66667,6,6,0,0.0666667,6))>

For information on how Lisp output affects the text object system,
refer to the chapter ASCII Format for Text.

ASCII Format for Graphics Objects

4−8�Interleaf 7

I�I

The ASCII loader currently does not properly handle Lisp symbols
split across line endings in diagramming markup. To avoid this
problem, keep saved Lisp data expressions within diagramming
objects as short as possible.

Markup for Specific Objects

The coordinates of objects in the descriptions in this chapter are in
inches relative to the upper−left corner of the containing frame.
Positive x coordinate values go to the right from the upper−left
corner of the containing frame; positive y coordinate values go down
from the upper−left corner of the containing frame. All frames are
rectangular.

When you declare a value, do not use more than nine digits to the
left of the decimal point and six digits to the right of the decimal
point. Because the internal floating−point precision is roughly nine
digits, Interleaf recommends that you use no more than a total of
nine significant digits, left and right, to specify each coordinate.

Lines

In markup, a lowercase v (for vector) specifies a line segment, and
the version number is 7. Here is an example of markup for a line
segment:

(v7,1,0,,0.7,1.3,2.1,1.3,7, 0, 6, 0)

Value Represents

v7 object type: line (version 7)
1 z coordinate
0 general graphic object flags
empty field saved lisp data (none in this example)
0.7, 1.3 x,y coordinates of the beginning (in inches)
2.1, 1.3 x,y coordinates of the end (in inches)
7 color (black)
0 transparency (opaque; visible)
6 line width (points)
0 line pattern (solid)

Note

Markup for Specific Objects

I�I

File Formats�4−9

Groups

A group is a collection of objects treated as a single unit.

In markup, a lowercase g represents a group, and the version
number is 9. The z coordinate and flags follow g9. The rest of the
group consists of a list of objects.

For example, the markup for a group of four line segments might
look like this:

(g9,1,0,
(v7,1,0,,0.7,1.3,2.1,1.3,7, 0, 6, 0)
(v7,2,0,,0.9,1.7,3.1,2.3,7, 0, 6, 0)
(v7,3,0,,0.3,4.3,2.6,1.9,7, 0, 6, 0)
(v7,4,0,,1.7,1.4,4.1,2.3,7, 0, 6, 0)

All graphics objects in a frame are considered part of a group. For
example, the markup for a frame containing a single line segment
might look like this:

<Frame ...
V11,
(g9,1,0,
(v7,1,0,,1.7,1.4,4.1,2.3,7, 0, 6, 0))>

The markup for a frame containing a single line segment and a
group of three others might look like this:

<Frame ...
V11,
(g9,1,0,
 (v7,1,0,,1.7,1.4,4.1,2.3,7, 0, 6, 0
 (g9,2,0,
 (v7,2,0,,0.7,1.3,2.1,1.3,7, 0, 6, 0)
 (v7,3,0,,0.9,1.7,3.1,2.3,7, 0, 6, 0)
 (v7,4,0,,0.3,4.3,2.6,1.9,7, 0, 6, 0))))>

The first g is not significant for designating a group. This top−level
group object contains all the objects in the frame. The top−level
group can contain other nested groups.

ASCII Format for Graphics Objects

4−10�Interleaf 7

I�I

Here is the markup for a more complex group, a polygon with an
ellipse (visually) inside:

(g9,2,0,
 (p8,2,8,,5,5,127
 (g9,2,0,
 (v7,2,65536,,2.133333,2.8,7.8,2.8,7,0,6,0)
 (v7,3,65536,,7.8,2.8,7.8,1.066667,7,0,6,0)
 (v7,4,65536,,7.8,1.066667,2.133333,1.066667,7,0,6,0)
 (v7,5,65536,,2.133333,1.066667,2.133333,2.8,7,0,6,0))))
(e9,6,0,,3.666667,1.2,7.266667,1.2,3.666667,2.533333,5,127,5,7,0,6,0))

As with other diagramming objects, the group (g9) markup includes
a field for Interleaf Lisp data. In the case of the group, the Lisp
field occurs between the comma at the following the third field and
the left (opening) parenthesis for the first object in the field.
Because this field is often empty, it may be easy to overlook. For
example, in the markup above, if there were saved Lisp data on the
group it would appear following g9,2,0, on the first line.

Polys

In markup, a lowercase p specifies a poly, and the version number is
8. Here is an example of markup for a simple poly, a box:

(p8,2,8,,5,7,127
 (g9,2,0,
 (v7,2,65536,,2.866667,7.066667,7.066667,7.066667,7,0,6,0)
 (v7,3,65536,,7.066667,7.066667,7.066667,4.666667,7,0,6,0)
 (v7,4,65536,,7.066667,4.666667,2.866667,4.666667,7,0,6,0)
 (v7,5,65536,,2.866667,4.666667,2.866667,7.066667,7,0,6,0))))

Value Represents

p8 object type: poly (version 8)
2 z coordinate
8 flags
empty field saved lisp data (none in this example)
5 fill pattern (solid)
7 fill color (black)
127 fill transparency (invisible)
g9 ... a group of four line segments making a 3− by 1−inch box

Note

Markup for Specific Objects

I�I

File Formats�4−11

The end of the first element in a poly (second x,y pair) and the
beginning of the second element (first x,y pair) must match, and the
end of the second element must match the beginning of the third
element, and so on.

Ellipses

An ellipse is defined by specifying a bounding parallelogram. In
Figure 4−2, the parallelogram, and consequently the ellipse, is
uniquely defined by giving the coordinates of A followed by those of
B and C.

 A

 B

 C

 E n d p o i n t o f
 t a n g e n t v e c t o r

 E n d p o i n t o f
 t a n g e n t v e c t o r

 O r i g i n o f t a n g e n t v e c t o r s

 F i g u r e 4 − 2 . A n e l l i p s e .

In markup, a lowercase e represents an ellipse object, and the
version number is 8. Here is an example of markup for an ellipse:

(e8,16,0,,0.4,2.1,2.0,1.1,0.3,1.0, 0, 0, 5, 7, 0, 6.125, 0)

Note

ASCII Format for Graphics Objects

4−12�Interleaf 7

I�I

Value Represents

e9 object type: ellipse (version 9)
16 z coordinate
0 general graphic object flags
empty field saved lisp data (none in this example)
0.4, 2.1 x,y coordinates of origin of tangent vectors (in inches)
2.0, 1.1 x,y coordinates of tangent vector endpoint (in inches)
0.3, 1.0 x,y coordinates of tangent vector endpoint (in inches)
0 interior color (white)
0 interior transparency (opaque)
5 interior pattern (solid)
7 border color (black)
0 border transparency (opaque)
6.125 border width (points)
0 line pattern (solid)

Arcs

Interleaf 7 supports the three types of conic arcs: elliptic, parabolic,
and hyperbolic.

Arcs have a six−point model:

� Point 1 is the tangent at the beginning point.

� Point 2 is the beginning point.

� Point 3 is a point on the arc between point 2 and point 4.

� Point 4 is a point on the arc (usually the endpoint).

� Point 5 is the tangent at point 4.

� Point 6 is the endpoint.

In a hyperbolic arc, all the points must be on the same half of the
hyperbola.

If an elliptic arc is greater than 180 degrees, the angular separation
of the tangent vectors cannot be less than arctan (2), or
approximately 63.5 degrees. For closed, or almost closed, arcs, point
4 will be distinct from point 6 to satisfy this condition.

Markup for Specific Objects

I�I

File Formats�4−13

In Figure 4−3, points 4 and 6 are the same on the non−extended arc,
and distinct on the extended arc.

 N o n − e x t e n d e d a r c E x t e n d e d a r c

 2 1

 3

 4 6

 5

 4

 5 6

 1 2

 3

 F i g u r e 4 − 3 . E l l i p t i c a r c s .

In markup, a lowercase a represents an arc, and the version number
is 9. The z coordinate and flags follow a9. The number 1 is the
format; 1 is the only valid value.

ASCII Format for Graphics Objects

4−14�Interleaf 7

I�I

Here is an example of markup for a non−extended elliptic arc:

(a9,1,0,,1,0.5,1,1.5,1,2.207107,1.292894,2.5,2,2.5,3.0,2.5,2,5,7,127
,7,0,6,0)

Value Represents

a9 object type: arc (version 9)
1 z coordinate
0 general graphic object flags
empty field saved lisp data (none in this example)
1 format (Interleaf)
0.5,1 x,y coordinates of point 1 (tangent at beginning point)
1.5,1 x,y coordinates of point 2 (beginning point)
2.207107,I
1.292894 x,y coordinates of point 3 (point between point 2 and point 4)
2.5,2 x,y coordinates of point 4 (endpoint)
2.5,3.0 x,y coordinates of point 5 (tangent at point 4)
2.5,2 x,y coordinates of point 6 (same as point 4)
5 interior pattern
7 interior color
127 interior transparency
7 border color
0 border transparency
6 border width
0 border pattern

Here is an example of markup for an extended elliptic arc:

(a9,1,0,,1,3.0,1,4,1,4.25,2.96,3.03,1.74,3.29,0.77,3.5,1.13,5,7,127,
7,0,6,0)

Markup for Specific Objects

I�I

File Formats�4−15

Value Represents

a9 object type: arc (version 9)
1 z coordinate
0 general graphic object flags
empty field saved lisp data (none in this example)
1 format (Interleaf)
3.0,1 x,y coordinates of point 1 (tangent at beginning point)
4,1 x,y coordinates of point 2 (beginning point)
4.25,2.96 x,y coordinates of point 3 (a point on the arc between

point 2 and point 4)
3.03,1.74 x,y coordinates of point 4 (a point on the arc)
3.29,0.77 x,y coordinates of point 5 (tangent at point 4)
3.5,1.13 x,y coordinates of point 6 (endpoint)
5 interior pattern
7 interior color
127 interior transparency
7 border color
0 border transparency
6 border width
0 border pattern

Splines

Splines are smooth curved lines drawn through or near a series of
control points called knots.

In markup, an uppercase S specifies a spline object, and the version
number is 14.

The z coordinate and flags fields follow the S14. The coordinates of
the basis of the spline are next, followed by color, pattern,
transparency, and the total number of knots.

Each ensuing knot consists of its x,y coordinates in inches, the line
color and transparency, the line width, and the line pattern. After
the last knot, there is one more field consisting of the letter O or C
depending on whether the spline is open or closed. If the spline is
open, you must specify the endpoints in duplicate.

ASCII Format for Graphics Objects

4−16�Interleaf 7

I�I

Here is an example of markup for an open spline:

(S14,8,0,,3.2,6.86,5,5,127,11,0,0,7,0,16,0,0,0,7,0,16,0,2.8,2.533333,

7,0,16,

0,-1.333333,1.266667,7,0,16,0,-1.874191,1.10092,7,0,16,0,0.066667,

0.666667,7,0

,16,0,0,0.6,7,0,16,0,-0.533333,0.066667,7,0,16,0,-0.866667,-0.4,7,0,

16,0,-1.19

5464,-0.860317,7,0,16,0,-1.195464,-0.860317,7,0,16,0,O)

Value Represents

S14 object type: spline (version 14)
8 z coordinate
0 general graphic object flags
empty field saved lisp data (none in this example)
3.2,6.86 x,y coordinates (inches) of basis of spline
5 interior pattern
5 interior color
127 interior transparency
11 number of knots
0, 0 x,y coordinates (inches) of first knot relative to basis
7 segment color
0 segment transparency
16 segment width in 1/8 screen pixels (1/6000ths of an inch)
0 segment pattern
0, 0 x,y coordinates (inches) of second knot relative to basis
7 segment color (second knot)
0 segment transparency (second knot)
16 segment width (second knot)
0 segment pattern (second knot)
.I.I. etc.
O spline is open (end does not meet beginning)

Markup for Specific Objects

I�I

File Formats�4−17

Text Strings

A text string is a simple object without most of the characteristics of
a formatted microdocument.

In markup, a lowercase t represents a text string object, and the
version number is 14.

Here is an example of markup for a text string:

(t14,15,0,,6.6,5.6,1,7,0,180,us,wst:dutch12,text string ...)

Value Represents

t14 object type: text string (version 14)
15 z coordinate
0 general graphic object flags field
empty field saved Lisp data (none in this example)
6.6, 5.6 x,y coordinates (inches) of the text anchor (inches)
1 anchor type field
7 line texture or color indicator
0 transparency indicator; visible or invisible
180 angle of rotation of the text string
us text properties of the text string (underline, kerning, and

strikethrough)
wst:dutch12, character string field specifying the font type
text string ... the text string

In markup for a text string, each comma−delimited field must occur
in order. You do not need to specify the text properties in a
particular order.

You can specify any angle of rotation, but Interleaf 7 displays and
prints text only if it is non−rotated or is rotated 90, 180, or 270
degrees.

In the text properties field, you can specify text properties for the
text string. The markup is identical to regular text except that all
properties must be declared in lowercase letters. For example, u is
used instead of U for underlining and s is used for S (strikethrough).
Two commas in sequence indicate default text properties, as shown
in the first line of the example markup.

ASCII Format for Graphics Objects

4−18�Interleaf 7

I�I

The following examples show specifications for text strings:

(t14,1,0,,1.9,2.6,0,7,0,0,,wst:dutch12,a\ normal\ text\ string)
(t14,2,0,,1.9,2.9,0,7,0,0,s,wst:dutch12,a\ strike-through\ text\

string)
(t14,3,0,,1.9,3.0,0,7,0,0,u,wst:dutch12,an\ underlined\ text\

string)
(t14,4,0,,1.9,3.4,0,7,0,0,p,wst:dutch12,pair\ kerns\ off)
(t14,5,0,,1.9,3.6,0,7,0,0,t1,wst:dutch12,track\ kerns\ tight)
(t14,10,0,,1.9,4.4,0,7,0,0,t6,wst:dutch12,loosest\ track\ kerns)
(t14,11,0,,3.0,6.3,1,7,0,0,,wst:dutch12,This\ is\ unrotated\

text)
(t14,12,0,,2.96,6.3,1,7,0,90.0,,wst:dutch12,text\ is\ rotated\

90\ degrees)
(t14,13,0,,3.2,6.5,1,7,0,180.0,,wst:dutch12,text\ is\ rotated\

180\ degrees)
(t14,14,0,,3.3,6.6,1,7,0,270.0,,wst:dutch12,text\ is\ rotated\

270\ degrees)

In text strings, you use a backslash (\) in place of quotation marks
around certain characters. The following characters have special
meanings in ASCII format, and you must quote them with a
backslash:

< > () , \

To use one of these characters in a text string, precede it with a
backslash. Also, use a backslash to quote spaces in a text string. For
example, the less−than symbol followed by a space and a comma is:

\<\ \,

Chart labels must follow these graphics object quoting conventions.

Convert−to−Outline Object

For input only, there is ASCII markup that converts a text string
into outline font characters. Interleaf 7 loads this markup and
executes a Convert to Outline command on the specified text string.

The convert−to−outline markup, like other graphics object markup,
must appear within a frame after the version number and
specification for the upper−level group.

In markup, a lowercase o specifies a convert−to−outline text string,
and the version number is 4.

Quoting in
Text Strings

Markup for Specific Objects

I�I

File Formats�4−19

Here is an example of the convert−to−outline markup:

(o4,34,12,,0.7,1.2,6.5,wst:swiss16,This\ is\ rotated\ text)

Value Represents

o4, object type ID and version number
34 z coordinate
12 general graphic object flags
empty field saved Lisp data (none in this example)
0.7, 1.2 x,y coordinate of left baseline (inches)
6.5 rotation angle (radians)
wst:swiss16 character set: font and point size
This\ is\ ...) text string; the space characters are quoted with backslashes

On input, you specify placement (x,y coordinate of the left baseline
of the text string), scaling (point size), and rotation. The specified
point size must be an integer, but it does not have to be a point size
actually on the system. Interleaf 7 uses the specified point size only
for scaling the outline text.

Interleaf 7 does not output the convert−to−outline markup; it
outputs only the encrypted outline characters. Since you can specify
this markup on input, it is useful for filter programs.

The convert−to−outline markup in the example produces a display of
rotated outline font characters as shown in Figure 4−4.

 F i g u r e 4 − 4 . A t e x t s t r i n g c o n v e r t e d i n t o r o t a t e d o u t l i n e f o n t c h a r a c t e r s .

Microdocuments

In markup, an uppercase T indicates that the text object is a
microdocument, and the version number is 15. The z coordinate and
flags fields follow the T15. There are no special quoting
requirements for microdocuments.

ASCII Format for Graphics Objects

4−20�Interleaf 7

I�I

A soft−state microdocument has an implicit width of 24 inches. This
must be accounted for in the x coordinate of right− or center−aligned
microdocuments.

Class definitions for microdocuments can differ if they appear
before or after an Include statement. Definitions in an Included file
override definitions in the current file. The definition of a class in
the Include file takes precedence over a the definition for that class
in the current file.

The rest of the markup represents information about the properties
of the microdocument. Following the markup for the
microdocument object, there must be a newline before the markup
for the text itself.

Here is an example of markup for a microdocument containing the
sentence JThis is a sample microdocument":

(T15,1,12,,3.2,5.9,5,127,5,7,127,6,0,3,
<!Page, Width = 8 inches, Height = 0.133 inches>
<micro:caption,

Alignment = Left>
This is a sample microdocument
<End Text>)

Value Represents

T15 object type: text−microdocument (version 15)
1 z coordinate
12 general graphic object flags
empty field saved Lisp data (none in this example)
3.2, 5.9 x,y oordinates of top−left corner of microdocument (in inches)
5 interior color
127 interior transparency
5 interior pattern
7 border color
127 border transparency
6 border width
0 border pattern
3 object−specific flags (for Interleaf internal use except for flag bit

4, which specifies a soft−state microdocument)

Note

Markup for Specific Objects

I�I

File Formats�4−21

The markup for every microdocument has a <!Page, ...>
declaration. For a description of the properties and values that you
can set on a microdocument, refer to the section on the <!Page, ...>
declaration in the chapter ASCII Format for Text. The markup for
microdocuments must conclude with an <End Text> command.

Plotter or Vector−List Object

In markup, an uppercase V specifies the plotter or vector−list object,
and the version number is 9. The bounding box parallelogram
around the vector−list object is included in the ASCII description.
Figure 4−5 shows the coordinate pairs for the bounding box.

 (x o , y o) (x h , y h)

 (x v , y v)

 (v e c t o r − l i s t o b j e c t)

 F i g u r e 4 − 5 . V e c t o r − l i s t o b j e c t w i t h c o r n e r s o f b o u n d i n g p a r a l l e l o g r a m l a b e l e d .

These coordinate pairs, (xo,yo), (xh,yh), and (xv,yv), are dumped in
that order, after color and transparency and before the list of vector
sets.

Here is an example of markup for a plotter object:

(V9,1,1024,,0,7,0,0,6.480025,0,0,2.967676,
(X0,2,0006)
(X0,48,80000000000000000005EF220002C64A0079801F0000000000713C0

100360DA3000000000037A4D80002C64A0000CC89)
(X0,2,0000))

ASCII Format for Graphics Objects

4−22�Interleaf 7

I�I

Value Represents

V9 object type: vector−list plotter object (version 9)
1 z coordinate
1024 general graphic object flags
empty field saved Lisp data (none in this example)
7 color
0 transparency
0,0, specification for the parallelogram that bounds the plotter
6.480025,0 object; three points, with the fourth point implicit
0,2.967676
(X0,2,0006) beginning of a list of vector sets, each set consisting of two

hexafied binary data sets
(X0,2,0000)) end of a list of vector sets, each set consisting of two hexafied

binary data sets

Each vector set consists of a variable number of points. There may
be a variable number of vector sets encoded in the plotter object.

An ASCII string beginning with "(X0" and ending with ")" encodes
binary information in hexadecimal numbers. Each vector set
contains two encoded strings: one containing the number of points,
and the other containing the points themselves. After the last vector
set there is one more hex encoding, (X0,2,0000), indicating that the
next vector set has zero points. This indicates that all the vector sets
have been encoded.

The first hex set is the number of x,y coordinate pairs in the next
object. The maximum number of x,y coordinate pairs is 128 (hex
0080), equivalent to 1024 binary bytes. Hexafication yields a string
of 2048 characters. The second set is a series of x,y coordinates in
rsu’s (ridiculously small units; 1,228,800 rsu’s equal 1 inch). After
the last vector set, a hex set with two null bytes indicates the end of
the list.

A binary encoding starts with an open parenthesis and ends with a
close parenthesis. Inside are three fields, delimited by commas. The
first always contains "X0"; the second contains, in decimal, the
number of bytes that have been encoded. The third contains the
encoded information in hexadecimal. The high four bits of each byte
are encoded first, followed by the low four bits. This field will
contain twice as many characters as are specified in the second field.

Markup for Specific Objects

I�I

File Formats�4−23

The count of points that begins each encoded vector set is, in binary,
a 2−byte integer. So (X0,2,0006) indicates that there are six points.
(X0,2,001A) indicates 26 points.

Each point consists of two full−word integers, or eight bytes. All the
points are encoded in the same string, so following with the six−point
example above, the next encoding starts with (X0,48,...).

Encapsulated PostScript Object

In markup, a lowercase n specifies the Encapsulated PostScript (EPS)
object, and the version number is 6. The EPS object consists of the text
from an EPS file and some data that indicates to Interleaf 7 how to
treat the EPS object within the graphics system.

Here is an example of markup for an EPS object (most of the EPS
text is not shown):

(n6,1,0,,1.1,0,5.29,0,1.1,4.81,130,-491,432,-144
(p8,1,8552,,5,4,0
 (g9,0,0,
 (g9,0,0,
 (v7,2,0,,1.1,0,5.294444,0,7,0,8,0)
 (v7,3,0,,5.294444,0,5.294444,4.819444,7,0,8,0)
 (v7,4,0,,5.294444,4.819444,1.1,4.819444,7,0,8,0)
 (v7,5,0,,1.1,4.819444,1.1,0,7,0,8,0))))

(X0,2,0800)%!PS-Adobe-1.0\012%%Creator:Adobe\ Illustrator\250 ...)
(X0,2,0800)definefont\ pop}q\012n\012gsave\012%%FontEncoding ...)
(X0,2,0295)\ 212\ -279\ c\012227\ -280\ 225\ -296\ 244\ -297\ c\

...)
(X0,2,0000))

ASCII Format for Graphics Objects

4−24�Interleaf 7

I�I

Value Represents

n6 object id (n) and version number (6)
1 z coordinate
0 flags
empty field saved Lisp data (none in this example)
1.1,0 coordinates for upper−left corner (inches)
5.29,0 coordinates for upper−right corner (inches)
1.1,4.81 coordinates for lower−left corner (inches)
130,−491 coordinates for lower−left corner of the original

bounding box in the EPS file (points)
432,−144 coordinates for upper−right corner of the original

bounding box in the EPS file (points)
(p8,...) display object (shaded box)
(X0,...) first in a series of records containing EPS text
(X0,...) second record
(X0,...) third record
(X0,2,0000) terminating record

Each text−containing record consists of a count given by a binary
data set converted to hex (see Plotter or Vector−List Object in this
chapter) followed by a count of the bytes of EPS data. The series of
records must be terminated with a zero−length record, (X0,2,0000).

Markup for Specific Objects

I�I

File Formats�4−25

OLE Objects

In markup, a lowercase q specifies an OLE objectNan object linked
or embedded from a Windows−based Object Linking and
Embedding (OLE) server application. The version number is 6.

Creation of OLE objects is not supported via ASCII markup, but is
described here for debugging purposes only.

Here is an example of markup for an OLE object.

(q6,1,0,,0,0.2666667,0.2,2.4000001,2.5333333
(X0,2,0400)
(X0,2,0100)
(X0,4,040000000)
(X0,4,000000000)
(X0,4,10000000)
(X0,16,110200008D0100009B120000A3130000)
(X0,4,14000000)
(X0,20,000099990000000001000000FFFFFFFF00000000)
(X0,4,005C0100)
(X0,89088,D0CF11E0A1B11AE10...))

Value Represents

q6 object type: OLE object (version 6)
1 z coordinate
0 general graphic object flags
empty field saved Lisp data (none in this example)
0 OLE transparency flag (if zero the border of the object

is visible)
0.2666667,0.2 x,y coordinates of upper left corner of object
2.4000001,
2.5333333 x,y coordinates of lower right corner of object
X0,2,0400 first in a series of ASCII renditions of binary values
...
X0,89088... last in series

Each ASCII rendition of a binary value starts with (X0, followed by
the length of the binary object that was written), then followed by
the item itself, where each binary byte is expressed as two
hexadecimal ASCII digits, followed by a close parenthesis.

Note

ASCII Format for Graphics Objects

4−26�Interleaf 7

I�I

In (X0,2,0400), the length of the binary object is 2. Hex 0x0400 is a
short integer that contains the number of items that are to be
encoded, which cannot be interpreted until the next line, which
indicates whether the integers are written in Intel or in Motorola
format. This example uses Intel format; there are four encoded
items.

(X0,2,0100) is another binary value. It is 0 for Motorola format and
non−zero for Intel format.

(X0,4,040000000) and (X0,4,000000000) are the encoded items.
Each represents a pair of encoded binary values. The first value
contains, in a fullword, the length of the second value. This seems
redundant in ASCII, but is necessary so that versions of Interleaf
that do not support OLE (like 6.1.1 on UNIX) can read and write
binary OLE format. So here, the first encoded item is 4 bytes long,
and it consists of a longword 0.

(X0,4,10000000) and (X0,16,110200008D0100009B120000A3130000)
indicate 16 bytes of binary information, and the specification of those
bytes.

(X0,4,14000000) and
(X0,20,000099990000000001000000FFFFFFFF00000000) are 20 bytes
of binary information.

(X0,4,005C0100) and (X0,89088,D0CF11E0A1B11AE10...)) are the
next 89,088 bytes of binary information. The last closing parenthesis
ends the OLE object.

The four encoded items are considered opaque; even Interleaf
doesn’t really know much about what is in there. It’s OLE data
needed to reconstruct information about the OLE object. It is this
opacity that prevents OLE objects from being created through the
markup.

Bézier Objects

I�I

File Formats�4−27

Bézier Objects

Bézier objects consist of a series of connected cubic Bézier curves.
Each curve has its own edge properties that are associated with the
curve’s beginning vertex. Figure 4−6 shows a Bézier object with three
vertices and associated handles.

 1 s t v e r t e x

 2 n d v e r t e x

 3 r d v e r t e x

 n e x t h a n d l e p r e v h a n d l e

 p r e v h a n d l e n e x t h a n d l e n e x t h a n d l e

 p r e v h a n d l e

 F i g u r e 4 − 6 . A B é z i e r o b j e c t w i t h t h r e e v e r t i c e s .

The markup for the Bézier curve in Figure 4−6 is as follows:

(z5,1,0,,5,127,5,3,2,1,3,1,1,1,1,7,0,0,1,3,2,4,2,2,2,0,7,0,0,1,4,1,5
,2,3,0,2,7,,0,1)

Value Represents

z5 object ID (n) and version number (5)
1 z
0 locks
empty field saved Lisp data (none in this example)
5 fill color
127 fill transparency
5 fill pattern
3 vertex count
2,1 1st vertex x/y
3,1 next handle x/y
1,1 prev handle x/y
1 Bézier flags (see below)
7 1st curve edge color
0 1st curve edge transparency
0 1st curve edge dashes

ASCII Format for Graphics Objects

4−28�Interleaf 7

I�I

1 1st curve edge width
3,2,4,2,2,
2,0,7,0,0, 2nd vertex...
1,4,1,5,2,3,
0,2,7,,0,1) 3rd vertex...

Bézier flags:
0x0001 first vertex
0x0002 last vertex
0x0004 no curve to next vertex

Named Graphics Objects

The markup for named graphics objects comes in two parts: master
definitions, which must appear with other masters (such as
components) at the beginning of the document, and instance
definitions, which appear within frame markup.

The master definition for named graphics objects is shown in the
example given here. The example describes a poly named my box.
Only markup relevant to named graphics objects is displayed.

<!Master Diagramming Object,
 Diagram =
V11,
(N10,0,8,,1796,0,my\box,7,0,1,0,7,127,5,0,0,1.3333333,0,0,0.6,
0,0,1.3333333,0,0
0.6
 (p8,0,8,,5,7,127
 (g9,0,0,
 (g9,0,0,
 (v7,0,65536,,0,0,1.3333333,0,7,0,1,0)
 (v7,1,65536,,1.3333333,0,1.3333333,0.6,7,0,1,0)
 (v7,2,65536,,1.3333333,0.6,0,0.6,7,0,1,0)
 (v7,3,65536,,0,0.6,0,0,7,0,1,0)))))>

With the exception of their special version and number markup,
instance definitions for named graphics objects are identical to
those for standard graphics objects.

Named Graphics Objects

I�I

File Formats�4−29

Here is the instance markup for my box:

<Frame,
[other markup omitted here]

Diagram =
V11,
(g9,2,0,
 (N10,2,8,,1796,0,my\
box,7,0,1,0,7,127,5,1.4666667,1.2,2.8,1.2,1.4666667,1.8,0,
 ,1.3333333,0,0,0.6
 (p8,2,8,,5,7,127
 (g9,2,0,
 (g9,2,0,
 (v7,2,65536,,1.4666667,1.2,2.8,1.2,7,0,1,0)
 (v7,3,65536,,2.8,1.2,2.8,1.8,7,0,1,0)
 (v7,4,65536,,2.8,1.8,1.4666667,1.8,7,0,1,0)
 (v7,5,65536,,1.4666667,1.8,1.4666667,1.2,7,0,1,0))))))>

Value Represents

N10 object type: named graphic object (version 10)
0 z coordinate
8 general graphics object flags
empty field saved Lisp data (none in this example)
1796 named graphics object flags
my\box object name. (spaces are permittedNfor a name my box

write my\ box)
7,0,5,0 edge: color, transparency, width, and pattern
7,0,5 fill: color, transparency, and pattern
1.1333333,1,
2.3333333,1,
1.1333333,
1.866666 xo,yo;xh,yh;xv,yv dimensions of Jreference" triangle
0,0,1.2,0,0,
0.8666667 xo,yo;xh,yh;xv,yv dimensions of Jtransformed" triangle

ASCII Format for Graphics Objects

4−30�Interleaf 7

I�I

The flags for named graphics objects are

0x0001 is shared
0x0002 has effectivity attributes
0x0004 edit content directly
0x0010 has valid edge color
0x0020 has valid edge visibility
0x0040 has valid edge dashes
0x0080 has valid edge weight
0x0100 has valid fill color
0x0200 has valid fill visibility
0x0400 has valid fill pattern
0x0800 reserved for system use
0x2000 force hidden

This object has 1796 in its named graphics object flags field, which
indicates that it has valid fill pattern, valid fill visibility, valid color,
and its contents can be edited directly. (1796 is 704 in hex.)

JReference" and Jtransformed" triangles only matter for shared
named graphics objects. They are used to record the
transformations (such as move, size, and rotate) applied to each
instance. For example, when an object is moved, the Jtransformed"
triangle is moved also but the Jreference" triangle remains as it was
when the instance was created.

When a shared named graphics object instance is loaded or its
master’s content is changed, the named graphics object instance is
re−created by applying the accumulated transformation to a copy of
the master. The edge and fill properties are then applied if valid.

Edit State Objects

I�I

File Formats�4−31

Edit State Objects

Edit state objects save user preferences per frame if any them differ
from the default settings.

Markup for edit state objects is as follows:

(E16,0,0,,5,1,1,0.0533333,1,45,0,0,1,0,0,0,1,5,127,7,0,0,7,0,1,1,0.0
666667,0.0666667,6,6,0,0.0666667,6)

Value Represents

E16 object ID (E) and version number (16)
0 z coordinate
0 flags
empty field saved Lisp data (none in this example)
5 creation default fill pattern
1 creation default border width
1 gravity on (0 = off)
0.0533333 gravity radius (inches)
1 detent on (0 = off)
45 detent angle (degrees)
0 creation default dash pattern (index into array of patterns 0−9)
0 zoom off (1 = on)
1 zoom level (.25−16.0)
0 x shift (graph relocation in inches)
0 y shift (graph relocation in inches)
0 input scaling off (1 = on)
1 input scale factor
5 creation default fill color
127 creation default fill transparency (transparent; 0 = opaque)
7 creation default edge color
0 creation default edge transparency (opaque; transparent=127)
0 creation default text angle (degrees)
7 creation default text color
0 grid display off
1 grid alignment on
1 grid on top (front)
0.0666667 grid horizontal minor subdivision length
0.0666667, grid vertical minor subdivision length
6 number of horizontal minor subdivisions per major division
6 number of vertical minor subdivisions per major division
0 rectangular grid (1 = isometric)

ASCII Format for Graphics Objects

4−32�Interleaf 7

I�I

0.0666667 isometric grid subdivision length (inches)
6 number of isometric subdivisions per major division.

Charts and Images

Charts are described in the chapter ASCII Format for Charts. Images
are described in the chapters ASCII Format for Image Objects and
Binary Format for Image Objects.

I�I

File Formats�5−1

This chapter describes Interleaf ASCII format for charts.

 In Interleaf 7, all charts are graphics objects and follow the general
format for graphics object markup. All charts must occur within a
<Frame, ...> command.

The ASCII format for charts consists of a series of records
surrounded by parentheses. Each record contains fields separated
by commas. The first field in each record is the record identifier.
A parenthesis terminates each record, and an ASCII new−line
character can follow this parenthesis.

To position the chart in its frame, graphics markup must precede
all the chart records. The graphics markup starts with c5, which
declares a chart. A comma must follow this graphics markup, and
a two−digit chart version number follows the comma. The chart
version number is 07. No comma follows the version number, but
a new line can.

ASCII Format for Charts

ASCII Format for Charts

5−2�Interleaf 7

I�I

Record Structure

There are three basic record types for Interleaf ASCII chart
markup: records for chart style control, data records, and records
for variable style control.

Every chart record identifier begins with the letter c followed by one
or more characters; for example, cv, cO, clo. Many records require
multiple fields separated by commas. Except for the v record, you
can omit any of the chart records. When you omit a record, the
system assumes the default values for that record.

Within a given record, you can also omit fields. If you omit all fields
except the record id, the record need not appear at all. If you omit
some fields, you must represent the empty or blank fields with
ASCII space or tab characters surrounded by the requisite number
of commas. Omitted fields take default values. To minimize markup,
Interleaf 7 generally does not write out fields whose values are the
defaults.

In this chapter, hex data is preceded by 0x for clarity, but this
representation is not in the file data, which contains only the hex
digits 0−f or 0−F.

Units in ASCII Markup for Charts

Geometry for charts is specified in rsu’s (ridiculously small units),
signed decimal integers represented in 32 bits.

The internal representation of chart data contains information
about the display precision of data input from files or menus.
Therefore, when preparing data for the chart system, do not input
numbers such as 4.999999 when 5.0 or 5 is sufficient. Conversely,
this display precision, which can be of use in financial applications,
is not lost. This precision has a more noticeable effect on the Chart
Editor Data dialog boxes than on the display of the chart itself.

Interleaf takes no special care about the precision of floating−point
calculations, which can thus be somewhat platform−dependent.This
treatment has no discernible effect on the chart display, and all
platforms conform to IEEE floating−point standards.

 ASCII Record Markup for Charts

I�I

File Formats�5−3

In the following sections, the term VALUE denotes a floating−point
number whose display is precise; short denotes 16−bit signed
integers; and long denotes 32−bit signed integers.

In the units described in the following section, rsu (scalable)
specifies that the unit can be scaled and that its value in that case is
the value for a 1,000,000−rsu−square chart. When you scale the chart
interactively, some chart geometry scales automatically. This scaling
only takes place under control of the scaleflags bits in the f record.
In this case, such units are ratios to 1,000,000 rather than absolute
units.

 ASCII Record Markup for Charts

The record descriptions in this chapter have the following form:

id fieldname[,fieldname, ..., fieldname] units

Each record id must begin with c. In this chapter, for clarity, the
required initial c is omitted from each record id.

The v record must not be omitted and must be the first record.
These values control the amount of data read and must correspond
to the amount of data presented in certain cases, as described in the
following sections.

The format for the v record is as follows:

v ni, nd short

Each chart consists of nd dependent variables, which can take data
for each of the ni independent values. Each variable is represented
in a chart by a different texture, color, or line style. On the Chart
Editor Data dialog box, the dependent variables appear as columns
and the independent values appear as rows.

Format for Record
Description

Note

The v Record

ASCII Format for Charts

5−4�Interleaf 7

I�I

Line charts and their relatives have two numbers for each
independent value. These numbers represent the ordinate and
abscissa as described in this chapter. Other chart types associate
only one number, which represents the actual data, with each
independent value. You can think of these cases as having nd
collections of data indexed by the integers 1..ni. There is also a
provision made for entering ni labels and treating them in a way that
depends on the chart type.

Records for Chart Style Control

This section describes records that control the style of the chart.

The value of the t record determines the basic chart type.

t type short

The supported types are

0 vertical bar chart
1 horizontal bar chart
2 100% bar chart
3 line chart
4 horizontal bar surface chart
5 vertical column surface chart
6 pie chart
7 line surface chart

If the chart type value is omitted, the system defaults to 0, a
standard bar chart.

The format of the f record is as follows:

f dflags, scaleflags, sflags hex

The default for the f record is 0,0,200.

Several bit fields control chart display behavior. These are 16−bit
quantities specified in hexadecimal notation with digits 0−f or 0−F.
Observe default behavior carefully; some of these bits specify that
something be turned on, and others specify that something be
turned off. For convenience, symbolic names are given for these
bits.

The t (Type)
Record

The f (Flags)
Record

 ASCII Record Markup for Charts

I�I

File Formats�5−5

The dflags control data calculations for the chart. They are as
follows:

RNGI 1 abscissa (independent value) range limits
set by user

RNGD 2 ordinate (dependent variable) range limits
set by user

These flags are used only for line charts. If these bits are not set, the
system computes the range of displayed data by a heuristic that
places the maximum data point about 90 percent of the way up the
chart.

The scaleflags control the behavior of the chart when it is resized.
When the appropriate bit is set, a given quantity is interpreted as
scaled rather than absolute rsu’s, thereby changing its semantics
from rsu’s into ratio to 1,000,000. All values default to 0.

The principal application of this kind of relative scaling is to ensure
that graphics objects overlay charts when sized with the chart, and
that they keep their position and size relative to all the chart
elements. If you permit margins to scale down too far, labels
disappear.

The scaleflags are

DMAR 0x1 data margins
DBARBWD 0x2 bar border width
DBORD 0x10 data border
DBARWD 0x20 bar width
DGAPWD 0x40 gap width
DTXTMAR0 0x100 left label margin
DTXTMAR1 0x200 right label margin
DHMJWID 0x400 major hash width
DHMJLEN 0x800 major hash length
DHMNWID 0x1000 minor hash length
DBACKWID 0x4000 background line width
DLINWID 0x8000 line chart line width

ASCII Format for Charts

5−6�Interleaf 7

I�I

The sflags for style control elements of the chart display style are

BARWDFIX 0x1 User sets the width of bars.
YMJ_NOLABEL 0x2 Do not label vertical hash marks.
XMJ_NOLABEL 0x4 Do not label horizontal hash marks.
LINEPTS 0x8 Data point markers drawn on lines.
BKDINFRONT 0x10 Background lines drawn in front of bars.
NOBARBRDR 0x20 No bar borders drawn.
YLOG 0x40 Log scale on ordinate axis.
XLOG 0x80 Log scale on abscissa axis.
DECIMAL_COMMA 0x100 Display decimals with commas instead of periods
PEN_LINES 0x200 Use penned lines instead of mitred lines

 in line charts. If you omit the sflags field,
 lines will be penned. However, if the

 sflags field is present, you must set the
 PEN_LINES bit to get penned lines.

YMN_LABEL 0x1000 Label minor hash marks in Y axis.
XMN_LABEL 0x2000 Label minor hash marks in X axis.

Normally, these flags are only set for log charts,
since in linear charts setting these flags destroys
the distinction between major and minor hash
marks. In log charts, the major hash marks are
at constant multiples of the logarithm base (for
example, 1, 10, 100, .I.I.), whereas the minor
marks are at integral multiples of the major
(2, 3, 4, .I.I. 9, 20, 30, .I.I.).

PIE_NOON 0x4000 Start pie charts at 12 o’clock instead of 3
o’clock.

The format for the g record is as follows:

g gaprt short

This decimal short controls the gap ratio, the ratio of bar width to
gap width. This ratio is given by (gapwidth/barwidth)=gaprt/100.
The default value is 67, so that the gap between bars is about
two−thirds the size of the bar width. This ratio is ignored if the
BARWDFIX bit is set in sflags.

The g (Gap Ratio)
Record

 ASCII Record Markup for Charts

I�I

File Formats�5−7

The format for the h record is as follows:

h Yhashintvl, Xhashintvl float

The h record controls the major hash intervals on the ordinate and
abscissa axes. If the h record is unspecified, the system determines
them heuristically. Xhashintvl is ignored for all charts except line
charts. For horizontally oriented charts, Yhashintvl is on the x−axis.

The format for the j record is as follows:

j txtmar[0],txtmar[1] rsu(scalable)

The j record controls the distance from the label to the chart edge.
This distance is the space for labels and hash marks. Txtmar[0] is at
the left; txtmar[1] is at the bottom of the chart.

The format for the jr record is as follows:

j txtmar[2] rsu(scalable)

The jr record controls the distance from the label to the chart edge.
This distance is the space for labels and hash marks. Txtmar[2] is at
the right of the chart.

The format for the m record is as follows:

m mleft, mright, mtop, mbottom rsu(scalable)

This record controls the margin between the chart data border and
the frame boundaries.

The format for the b record is as follows:

b databorder rsu(scalable)

The b record controls the width of the data border. The default
value is 2, which is the smallest line deemed reasonable in
appearance on the target output device.

The format for the w record is as follows:

w barwidth, gapwidth rsu(scalable)

The h (Hash
Interval) Record

The j Record

The jr Record

The m (Margin)
Record

The b (Data Border)
Record

The w (Bar Width)
Record

ASCII Format for Charts

5−8�Interleaf 7

I�I

This record controls the width of bars and the gaps between the bars
in case the BARWDFIX flag is set in sflags. Otherwise, the widths
are computed by the chart system. The actual width of bars is
(barwidth+125,000) rsu; the actual width of gaps is gapwidth for all
but surface charts. Surface charts have 0 gapwidth.

The format for the l record is as follows:

l hmjwid, hmjlen, hmnwid, hmnlen, backwid, linwid rsu (scal
able)

The first four fields denote the width (wid) and length (len) of major
(mj) and minor (mn) hash marks. The remaining fields are the
widths of background lines and the lines for line charts.

The format for the lo record is as follows:

lo logbase float

This record controls the base to which log charts are computed. The
default is 10. Values must be greater than 1.0.

The format for the x record is as follows:

x bar1offset rsu

This record controls the offset before the first bar in a chart if this
offset is fixed by the user (BARWDFIX set in ctsflags).

The format for the y record is as follows:

y zerowid rsu

This record controls the width of the origin line when it is visible. It
defaults to backwid.

The format for the p record is as follows:

p pierad,exprad,expshf short

The l Record

The lo (Logbase)
Record

The x (Offset)
Record

The y Record

The p Record

 ASCII Record Markup for Charts

I�I

File Formats�5−9

The first field in this record, pierad, is the ratio of the displayed
radius to the system−determined value of the radius of pie charts.
The second field, exprad, is the ratio of the radius of exploded
wedges to the radius of the pie chart. The third field, expshf, is the
shift of an exploded wedge expressed as a percentage of the radius
of the pie. All are in integral percentages.

The format for the r record is as follows:

r mnIrng,mxIrng,mnDrng,mxDrng VALUE

The fields in this record are the minimum and maximum,
respectively, of the I range and D range. When the chart is not
automatically scaled (RNGI or RNGD bits set in dflags), these
fields specify the ranges for abscissa and ordinates. The abscissa
data is always ignored in all charts but line charts, because in all
other charts the abscissa data is simply an index. If you set these
fields explicitly, you must also set hashintvl in the h record.

Data Records

This section describes the presentation of data. The first data
records described are the simple cases. When data is read, the
variables ni and nd must be defined.

The format for a data record is as follows:

D label,data1,data2,...datand text,VALUE, . . . ,VALUE

The chart reader expects up to ni data records, each preceded by a
D identifier and containing a label and nd data fields. Both the label
and data can be omitted, but the requisite number of commas must
be in the record.

Labels are strings of 16−bit characters from the International
character set encoded as 8−bit ASCII bytes. Labels follow the ASCII
file format conventions for graphics objects.

Chart labels must follow the graphics object conventions for quoting
in text strings. You must use a backslash (\) to quote spaces and
several other restricted characters in chart labels. You can give chart
labels literally only if they contain printable ASCII characters with
no embedded spaces.

The r (Range)
Record

ASCII Format for Charts

5−10�Interleaf 7

I�I

The data is given as VALUEs. After ni records are read, subsequent
records are ignored. Records need not be contiguous, but they are
indexed 1..ni in the order in which they appear in the file.

Each field in the data records is assigned a color and pattern for
display. These color and pattern assignments are fixed for all the
records. For example, they distinguish the variable being plotted in
a multi−variable chart.

If the chart is a line chart, the same format can be used for abscissa
values, except if the identifier is Dx and there is no label.

The general format of data records for a line chart is as follows:

Dx xdata1,xdata2, . . .xdatand VALUE, . . . ,VALUE

If data1,data2,...datand (resp xdata1,xdata2,...xdatand) are from the
i−th D (resp Dx) record, then (xdataj,dataj) is the i−th point on the
j−th line.

Records for Variable Style Control

This section describes records that control chart style per variable.

F Dflag1,Dflag2, . . . DFlagnd hex short

Use the i−th variable if DISPD is set in Dflagi ; otherwise, ignore it.
You can consider each variable or each record as used or unused in
the chart display, but the data is kept in the chart. A set of flags
determines this behavior and other presently unspecified
per−variable or per−record behavior. The bits in these flags are

DISPI 0x1
DISPD 0x2

G I flag1,Iflag2, . . . IFlagn ihex short

Use the i−th record if DISPI is set in Iflagi; otherwise, ignore it.

These bits are all set by default in any chart created or read by the
chart system. External software need not deal with these bits unless
you want some bits set and some bits not set.

The F Record

The G Record

 ASCII Record Markup for Charts

I�I

File Formats�5−11

The format for the C record is as follows:

C c1,c2, . . . cnd integer

The ci field represents the color of the i−th variable’s display.

The format for the P record is as follows:

P p1,p2, . . . pnd integer 0-255

The pi field represents the pattern of the i−th variable’s display.

The format for the T record is as follows:

T t1,t2, . . . tnd 0 OR 255

The ti field represents the transparency (that is, visibility) of the
i−th variable’s display.

Every variable in a chart is assigned color, pattern, and visibility
attributes. These attributes have the same descriptions as in the
graphics system, and are documented in the chapters ASCII Format
for Text and ASCII Format for Graphics Objects.

Color and pattern are palette entries composed of integers between
0 and 255. Transparency is an integer: either the default 0 (visible)
or 255 (invisible). If all the display is to be visible, no visibility
record need appear. Invisible data is involved in all computations
but is painted transparently, so that anything underneath invisible
data shows through.

Borders on bars and pies are still painted for invisible data. On
black and white devices, invisible and white variables are
indistinguishable if nothing is underneath them.

Invisible data is not the same as unused data. Unused data remains
in the chart but is not involved in display computations.

You must specify color and pattern palette entries. If you do not
specify color and pattern, palette referencing in the document will
be incorrect and palette editing might remove from the palette
entries that are still represented in the document.

The C (Color), P
(Pattern), and T
(Transparency)
Records

ASCII Format for Charts

5−12�Interleaf 7

I�I

The format for the L record is as follows:

L l1,l2, . . . lnd integer 0-255

The li field controls the line style (dash pattern) of the i−th line.
Lines in any line chart can be presented in either mitred or penned
style. Mitred lines meet in sharp corners with the data point at the
interior of the mitre. They can have color and texture just as bars
and pie wedges do.

Penned lines appear as though drawn with a pen, identical to the
drawing mechanism in the graphics system. These lines can have the
same dashed and dotted patterns available in the graphics system.
By default, charts have solid penned lines, but you must set the
PEN_LINES bit in the sflags field, or omit the sflags field.

The format for the O record is as follows:

O o1,o2, . . . ond integers

The oi field is the offset in increments of one−twelfth the barwidth of
the i−th bar. In bar charts, when the chart system computes the
position of the displayed variables relative to one another, it uses an
offset from an ideal center. The system computes the ideal center so
that each of the ni data points is evenly spaced. Bars are offset
negatively (left) or positively (right) in one−twelfth of a bar’s width
from this ideal center.

Each of the ni bars representing data for a particular nd variable is
offset by the given amount from the ideal position for that data
point. If any two bars have the same relative offset, their values are
summed and the bars appear stacked on one another.

The format for the E record is as follows:

E e1,e2, . . .end 0-5

These fields are endpoints. If the LINEPTS bit is set, markers are
put on the data points in line charts. These markers are chosen from
a small fixed set in the order given on the Chart Editor Style sheet.

The L (Line Style)
Record

The O Record

The E (Endpoint)
Record

 ASCII Record Markup for Charts

I�I

File Formats�5−13

The format for the W record is as follows:

W w1,w2, . . .wni unsigned integer

If wi = w, the w−th variable is exploded in the i−th pie chart.
Defaults are 0, meaning no explosions occur.

Sample Chart

The following chart is taken from the Charts folder in the Graphics
drawer of the System5 cabinet. The Version is 8.0. This chart has
been surrounded by a dashed box to show the actual boundaries of
the chart as a graphics object, which include chart margins. Thus
everything in the dashed box is part of the chart.

The ASCII markup for the sample chart follows the chart. All but
the essential ASCII markup for charts has been omitted here.

The last chart record is followed by a parenthesis closing the
graphics record, c5, that declares the chart. The chart ch record
could have been omitted since all of its fields are empty.

<|,”4<#0106>1”>

<Frame,

Name = ”figure”,

Placement =At Anchor,

Width = 4.50 Inches,

Height = 2.16 Inches,

Height = Contents,

Diagram =

V11,

(g9,1,0,

 (g9,1,0,

 (c5,1,0,,0.0533333,0.16,2.1066666,2.0456519,wst:swiss8,07

 (cv,3,3)

 (cg,67)

 (cm,360000,150000,180000,100000)

 (cj,13335,40005)

 (cl,0,40001,0,40001,0,0)

 (cx,350000)

 (cr,0,0,0,0)

 (ch,,)

 (cD,New\ York,40,39,28)

The W Record

ASCII Markup
for Sample Chart

ASCII Format for Charts

5−14�Interleaf 7

I�I

 (cDx,0,0,0)

 (cD,Paris,31,40,67)

 (cDx,0,0,0)

 (cD,Tokyo,90,60,46)

 (cDx,0,0,0)

 (cO,-12,-3,3)

 (cC,3,5,7)

 (cP,5,5,5)

 (cO,-12,-3,3))

 (p8,3,8,,5,5,127

 (g9,3,0,

 (g9,3,0,

 (v7,3,65536,,0.0666667,0.0133333,2.24,0.0133333,7,0,1,5)

 (v7,4,65536,,2.24,0.0133333,2.24,2.1600001,7,0,1,5)

 (v7,5,65536,,2.24,2.1600001,0.0666667,2.1600001,7,0,1,5)

(v7,6,65536,,0.0666667,2.1600001,0.0666667,0.0133333,7,0,1,5)))))

(E16,0,0,,5,1,0,0.0533333,1,15,0,0,1,0,-0.0133333,0,1,5,127,7,0,0,7

,0,0,1,0.066

 6667,0.0666667,6,6,0,0.0666667,6))>

 0
 1 0
 2 0
 3 0
 4 0
 5 0
 6 0
 7 0
 8 0
 9 0

 1 0 0

 N e w Y o r k P a r i s T o k y o

 ASCII Record Markup for Charts

I�I

File Formats�5−15

<!OPS, Version = 8.0>

[only chart markup is included]

<”para”>

<|,”1”>
<Frame,
 Name = ”Auto”,
 Placement = At Anchor,
 Width = 2.0666667 Inches,
 Height = 1.8933333 Inches,
 Diagram =
V8,
(g9,1,0,
 (c5,1,0,,0,0,2.0533333,1.8856519,wst:swiss8,07
 (cv,3,3)
 (cg,67)
 (cm,360000,150000,180000,100000)
 (cj,13335,40005)
 (cl,0,40001,0,40001,0,0)
 (cx,350000)
 (cr,0,0,0,0)
 (ch,,)
 (cD,New\ York,40,39,28)
 (cDx,0,0,0)
 (cD,Paris,31,40,67)
 (cDx,0,0,0)
 (cD,Tokyo,90,60,46)
 (cDx,0,0,0)
 (cO,-12,-3,3)
 (cC,3,5,7)
 (cP,5,5,5)
 (cO,-12,-3,3)))>

Like other graphics, charts have a field for saved Lisp data. In the
example above, this field is empty and so appears as two consecutive
commas.

Chart is
inside a frame

c5 opens the
chart markup

Chart markup
concludes

Note

I�I

File Formats�6−1

This chapter describes the Interleaf ASCII format for image objects.

An image is a rectangular pattern of pixels that can be a line−art
image, a continuous−tone (contone) image, or color images. The
ASCII representation of the image object is similar to that of other
graphics objects. It begins with a left parenthesis, contains a list of
fields, and ends with a right parenthesis.

The fields can be numbers, strings, or lists of other data. They are
usually separated by commas. Interleaf 7 ignores white space
characters such as spaces, tabs, and new lines. These white space
characters can appear at any point in the text of the image object.

ASCII Format for
Image Objects

ASCII Format for Image Objects

6−2�Interleaf 7

I�I

Image Object Markup

The following is an example of markup for a black and white image
object. This markup is for the image shown in Figure 6−1. To save
space, the portion of the image indicated by the ellipsis has been
omitted.

(i18,1,0,,
2.14,0.17,3.54,1.17,0.54,1.17,
11,0,1102,1133,
1,2,0.0,15,100,100,
7,0,
0,
2.32,2.39,
0,
1,
1103,0,0,1135,0,0,1103,1135,0,0,0,
0,0,1103,1135,1,
1,49008
(X0,49008,

07FFFFFFFFFFFFFFFFFFFFFC3FFE000FE3C0000000000003FFF
E00FFF8000000000000007E3C03FFC00000000000000007FFFF
FFE00
000000000000000
...
3FFFFC0000000000007F7800000000000000000000000000000
0000000000000000000)

0)

Image Object Markup

I�I

File Formats�6−3

Value Represents

i18 object type and version number (version 18)
1 z coordinate
0 flags field
empty field saved lisp data (none in this example)
2.14, 0.17 coordinates for transformed upper−left corner of image
3.54, 1.17 coordinates for transformed upper−right corner of image
0.54, 1.17 coordinates for transformed lower−left corner of image
11, 0 coordinates for upper−left corner of cropping rectangle
1102,1134 coordinates for lower−right corner of cropping rectangle
1 contrast scales (1 = linear)
2 number of breakpoints in the contrast curve
0.0, 15 breakpoint coordinate pair
100,100 breakpoint coordinate pair
7 color
0 transparency
0 default subeditor; always 0
2.32 default width of image in inches
2.39 default height of image in inches
0 unique ID
1 serial number
1103,0,0,1135 fields for optional display rasters
0,0,1103,1135 fields for optional display rasters
0,0,0 fields for optional display rasters
0,0 coordinates of upper left corner of raster relative to pro

genitor image
1103,1135 coordinates of lower right corner of raster relative to pro

genitor image
1 depth of raster in bits per pixel
1 format of raster; a raster format of 255 is followed by the

pathname to the linked image
49008 raster size in bytes (not for linked images)
(X0, ... beginning of hex data object describing the raster (not for

linked images)
...000) end of hex data object describing the raster (not for

linked images)
0) display raster description

ASCII Format for Image Objects

6−4�Interleaf 7

I�I

The first field is the object type identifier and version number, in
this case i18. The i stands for image, and 18 is the current version
number of the image object.

The z coordinate is an integer that specifies the depth of the image
with respect to other objects in the same graphic. Objects with
higher depths can obscure the image; objects with lower depths can
be obscured by the image. The sample image has a depth of 1.

The flags field has a bit that corresponds to each of the graphics
locks. Some locks that are useful with images are size (bit 0),
rotation (bit 2), and aspect (bit 12). The bits are numbered from
least significant to most significant. Setting a bit asserts the
corresponding lock.

Starting with Release 5.2, and with the V11 diagram version
number, a field for ASCII Lisp method storage is included in
output. This change affects all types of graphics objects. For more
information, refer to ASCII Lisp Method Storage for Graphics Objects
in the chapter ASCII Format for Graphics Objects.

The next six fields define the image’s bounding parallelogram.
These coordinate points are referred to here as xo, yo, xh, yh, xv, and
yv. The point (xo, yo) is the location of the upper left corner of the
original image after it has been transformed onto the page. If the
image has not been rotated or reflected, this coordinate is also the
upper left corner of the displayed image. The point (xh, yh) is the
transformed upper right corner of the original image, and the point
(xv, yv) is the transformed lower left corner.

These coordinates are specified in inches relative to the upper left
corner of the graphic. Figure 6−1 shows the sample image with the
defining corners of its bounding parallelogram labeled.

Object ID and
Version Number

z Coordinate

Flags

Saved Lisp Data

Bounding
Parallelogram

Image Object Markup

I�I

File Formats�6−5

(xo, yo)

(xh, yh)(xv, yv)

 F i g u r e 6 − 1 . S a m p l e i m a g e w i t h c o r n e r s o f b o u n d i n g p a r a l l e l o g r a m l a b e l e d .

The next four fields define the cropping rectangle. The first two
fields are the coordinates of the upper left corner of the cropping
rectangle, and the final two are the coordinates of the lower right
corner of the cropping rectangle. Both points are specified in the
relation to the coordinates of the progenitor image, and the
coordinates are in pixels.

Portions of the image that lie on or within the cropping rectangle
appear in the document. The sample image is 1103 pixels wide by
1135 pixels high. Its cropping rectangle, therefore, indicates that 11
pixels have been trimmed from the left side and one pixel has been
trimmed from the bottom. The bounding parallelogram is really the
bounding parallelogram of the image after cropping, not of the
entire image.

The next field determines the scale used in the contrast editing. A
value of 1 indicates linear scales, which is what all images created in
Interleaf 7 use. A value of 0 indicates logarithmic scales, which were
used prior to Interleaf 5. This field is used because it is not always
possible to convert piecewise−linear curves based on logarithmic
scales, so old documents are saved with their logarithmic scales
intact. The value of this field should be 1 (linear) unless you are
certain it needs to be set to 0 for backward compatibility.

Cropping
Rectangle

Contrast Scales

ASCII Format for Image Objects

6−6�Interleaf 7

I�I

The next field defines the number of breakpoints in the contrast
curve. A zero indicates that the contrast curve is the identity
mapping. Otherwise, the number of breakpoints should be at least 2,
and it should be followed by a list of breakpoint coordinate pairs.

The first coordinate of each pair is the abscissa of the corresponding
breakpoint, and the second coordinate is the ordinate. The
coordinates are expressed as floating−point percentages, with 0
representing white and 100 representing black.

The first breakpoint of the contrast curve must have an abscissa of
0. The last breakpoint must have an abscissa of 100, and abscissas of
the intermediate breakpoints must increase monotonically.

In the sample image, the first breakpoint has been raised slightly to
give the image a light gray background. The ordinate of this
breakpoint is 15, indicating that it lies 15 percent of the way from
the white end of the contrast scale to the black end.

In images created prior to Interleaf 5, the axes of the contrast curve
are logarithmic rather than linear, and so the breakpoint coordinate
values do not correspond directly to halftone dot percentages. This
causes images to appear darker than the percentages in the contrast
curve suggest. This is not an issue for Interleaf 7 images.

The next field defines the image color. Black portions of the
original image display in the specified color when the image is part
of a document. One of the values in the document’s color palette
should be used as the color. The color palette is defined by the
<!Color Definitions> declaration. (Refer to the description of the
<!Color Definitions> declaration in the chapter ASCII Format for
Text.) Most images, like the sample, are black, which is color 7 in
the default color palette.

The next field defines the transparency of the image. The
transparency field has only two legal values, 0 and 127. A
transparency of 0 means the image is visible. A transparency of 127
indicates that it is invisible.

The next field identifies which of the three subeditors appears by
default when you edit the image. A value of 0 corresponds to the
Picture Editor. This field should always be 0.

Breakpoints in
the Contrast
Curve

Note

Color

Transparency

Default Editor

Image Object Markup

I�I

File Formats�6−7

The next two fields define in inches the default width and height of
the image. The graphics feature that resets an image to its initial
dimensions uses the default width and height fields. The sample
image, scanned from a dollar bill, was originally 2.32 inches wide
and 2.39 inches high. These dimensions refer to the entire image,
not just the portion that is visible after cropping.

The next field is a unique ID intended to maintain coordination
between linked images in a document and the .img image files to
which they are linked. If an image in a document is not linked to an
outside file, the value of this field is 0. For linked images, the 4−byte
unique ID field of the .img should match the unique ID of the image
instance in the document. If it does not, Interleaf 7 assumes the .img
file has been edited and recomputes a new display resolution raster
for the image when the document is opened.

The next field is a serial number (it was called a Jraster
identification number" in previous editions of this manual). Every
distinct raster in a graphic must have a unique serial number. You
can satisfy this requirement by numbering the images sequentially,
starting with 1. If two or more images in the same graphic share the
same raster, only the first image includes a complete raster
definition; subsequent images repeat the serial number and omit the
remaining fields.

Since the sample image is the only image in the graphic, its serial
number is 1 and it includes a complete raster description. If you
make a copy of this image with the graphics Dup command, the
copy will have the same serial number but will not include the
remainder of the raster description. This is true even if the copy has
a different size, rotation, cropping, or contrast curve from the
sample.

The next 11 fields are used primarily for optional display rasters. In
the main raster, the optional display rasters’ values are

w-1, 0, 0, h-1, 0, 0, w-1, h-1, 0, 0, 0,

where w and h are the width and height of the raster in pixels.

The next four fields define the boundaries of the current image
relative to the progenitor area. The progenitor image is the original
image from which the current image was derived through editing.

Width and Height

Unique ID

Serial Number

Display Rasters

Current Image
Relative to
Progenitor Area

ASCII Format for Image Objects

6−8�Interleaf 7

I�I

The first two fields in this series are the x and y coordinates of the
upper left corner of the current image relative to the progenitor
image. The next two are the x and y coordinates of the lower right
corner of the current image relative to the progenitor image. This
information allows an image that is linked into a document and then
later cropped externally with the Image Editor to remain in the
correct position on the page. These coordinates are specified in
pixels.

The next field is raster depth, which is specified in bits per pixel.
Only depths of 1 and 8 are supported. A depth of 1 is used for
line−art images, and a depth of 8 is used for contone images.

The next field defines the format of the raster. Rasters can be
encoded in compressed (value = 1) or uncompressed (value = 0)
format, and can be local or linked in from external images. Only the
uncompressed format is described here.

A value of 255 in this field indicates that the image data is contained
in an external file (and linked into the document) rather than
residing in the document. If this is the case, a pathname for the
linked image file follows, instead of the raster size and the
hexadecimal representation of raster data. Normally this is the
filesystem pathname, but alternate name spaces can be
implemented through Interleaf Lisp.

The next field defines the raster size in bytes. For uncompressed
line−art images, this is

2h�w � 15
16 �

For contone images, the raster size in bytes is

2h�w � 1
2 �

where w is the pixel width of the image, and h is the pixel height.

The sample image is 49,008 bytes long. There is no comma after the
size field.

Raster Depth

Raster Format

Raster Size

Image Object Markup

I�I

File Formats�6−9

The next field is a hexadecimal data object that describes the raster
itself. Like the image object, the data object consists of fields
separated by commas and surrounded by a pair of balanced
parentheses.

The first field is the string X0. The X stands for hexadecimal, and 0
is the version number of this object type.

The next field is the number of bytes of data followed by a string of
hexadecimal digits, two for each byte of data. A right parenthesis
that terminates the data object follows the last hexadecimal digit.

The data constituting the raster is interpreted in scanline−major
order. That is, the data for the first scanline appears first, followed
by the data for the second scanline, and so on.

For line−art images, each bit of data represents a pixel; 0 bits
represent black pixels, and 1 bits represent white pixels.

For contone images, each byte represents a pixel intensity; 0
specifies black, and 255 specifies white.

For contone art, first−to−last order in the data corresponds to
left−to−right order in the scanline. For line art, most significant to
least significant order in the data corresponds to left−to−right order
in the scanline. For efficiency, scanlines are padded to the next even
byte boundary.

The next field is the beginning of the description of an optional
display−resolution raster. For importing an image, you can omit the
display raster by supplying an identification number of 0. This was
done in the sample image.

When parsing an image that contains a display raster, you can skip
the display raster by reading characters until encountering the right
parenthesis that terminates the image object. The display raster
description is at the end of the image description.

When skipping the display raster, do not terminate prematurely.
Display raster descriptions can contain right parentheses, but these
right parentheses must always be balanced by matching left
parentheses. Skipping should stop only when the proper right
parenthesis is reached.

Hexadecimal
Data Object

Optional
Display−Resolution
Raster

ASCII Format for Image Objects

6−10�Interleaf 7

I�I

The display raster description is followed by the right parenthesis
that terminates the image object.

Color Image Object Markup

The following is an example of markup for an 8−bit color image
object.

(i20, object type and version number
1 z coordinate
0, flags field
empty field, saved Lisp date
20, version
0, byte count (always 0 for ASCII format), new field in I6
0, reserved flags field, new field in I6
0.0066667,0.0066667, position
0.8599992,0.0066667,0.0066667,1.2866658 transform
3,0,0,0,63,95, cropping frame
3,0,1,2,0,0,100,100, red contrast curve
3,0,1,2,0,0,100,100, green contrast curve
3,0,1,2,0,0,100,100, blue contrast curve
3,0,1,2,0,0,100,100, composite (white) contrast curve
7, color index
0, transparency
0, backing store ID
1, image serial number
6, image object version
0, byte count
0, flags
75,75, resolution
0,0, raster header offset
64,96,8, dimensions
0, backing store type
150994944, null backing store format
216 number of color map entries

color map;
(X0,648,000A285BA2FE000A285BA2FE000A285BA2FE000A285B
A2FE000A285BA2FE000A285BA2FE000A285BA2FE000A285BA2
FE000A285BA2FE000A285BA2FE000A285BA2FE000A285BA2F

Color Image Object Markup

I�I

File Formats�6−11

E000A285BA2FE000A285BA2FE000A285BA2FE000A285BA2FE0
00A285BA2FE000A285BA2FE000A22FE000A285BA2FE000A285
BA2FE000A285BA2FE000A285BA2FE000A285BA2FE000A285B
A2FE000A285BA2FE000A285BA2FE000A285BA2FE000A285BA2
FE000A285BA2FE0000000000000A0A0A0A0A0A2828282828285B
5B5B5B5B5BA2A2A2A2A2A2FEFEFEFEFEFE0000000000000A0
A0A0A0A0A2828282828285B5B5B5B5B5BA2A2A2A2A2A2FEFE
FEFEFEFE0000000000000A0A0A0A0A0A2828282828285B5B5B5
B5B5BA2A2A2A2A2A2FEFEFEFEFEFE0000000000000A0A0A0
A0A0A2828282828285B5B5B5B5B5BA2A2A2A2A2A2FEFEFEFE
FEFE0000000000000A0A0A0A0A0A2828282828285B5B5B5B5B5B
A2A2A2A2A2A2FEFEFEFEFEFE0000000000000A0A0A0A0A0A
2828282828285B5B5B5B5B5BA2A2A2A2A2A2FEFEFEFEFEFE0
00
00000000000000A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A
0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A0A2828282828282
82
85B5
B5B5B5B5B5B5B5B5B5B5B5BA2A2A2A2A2A2A2A2A2A2A2A2
A2
A2FE
FEFEFEFEFEFEFEFEFEFEFEFEFEFEFE)

image data:
(X0,6144,5656565656565656564F56564F56565656564F5656564F565
64F56564F564F56564F564F564F56564F564F5656565656565656565
65656565656564F564F5656564F5656074F074F575D5C57635D5656
07565D565D5D885D565D565D6357885D875E87885D635D5D875
E88075608
...
0F51570957500F57575D5E565D5D56565656560E564F0E565D570
E5D5D57815D810809075009080209090809500908515D5D5D56635
75C5D5C575D565D5656575C575D8164568881565D5C0887575656
5D5D56815756568888815D8188888188575051085109575851515108
5108510788818881828757815D88815D88885D88875D818188818888
5D88888188815D56),0)

ASCII Format for Image Objects

6−12�Interleaf 7

I�I

Format Fields and Values

Notation:
italics = definition of the object follows
[] = optional, usually a previous field determines whether it is
present
{}= zero or more occurrences

Field Comments

version currently 20
byte count
flags see below
position RSUs, transformed upper−left
corner
 xo
 yo
transform RSUs, relative to transformed upper−left

upper−right
dxh
dyh
lower−left
dxv
dyv

cropping frame uses version 3
contrast curvesuses version 3

R curve var
G curve var
B curve var
W curve var

color info
color index index into document color palette
transparency 0=opaque, 127=transparent

backing store ID
image serial number
[<original image>] var uses version 6
raster serial number 4
[<display raster>] var uses version 5

DG−Image Object
I/O Format

Color Image Object Markup

I�I

File Formats�6−13

Field Comments

version currently 3
byte count
upper−left
 x1
 y1
lower−right
 x2
 y2

Field Comments

version currently 3
byte count
mapping 0=logarithmic, 1=linear
nbreaks
{breakpoint}*
 x
 y

Cropping Frame

Contrast Curve

ASCII Format for Image Objects

6−14�Interleaf 7

I�I

Field Comments

version number currently 5
byte count # bytes to skip, 0=unknown
cache key
transformation screen pixels

xh
yh
xv
yv

cropping image pixels
x1
y1
x2
y2

 contrast maps
flags
[R map] 256
[G map] 256
[B map] 256
[pixel map] 256

halftone screen
w 0 if no screen
h 0 if no screen

{thresholds}* var
dither

type 0=none, 1=gray, 2=color
levels

raster image uses version 6

Display Raster I/O
Format

Color Image Object Markup

I�I

File Formats�6−15

Field Comments

version number currently 6
byte count # bytes to skip, 0=unknown
flags
resolution

horizontal pixels/inch
vertical pixels/inch

raster header
offset

x
y

dimensions
w
h
depth

backing store type
backing store

Image Object I/O
Format

ASCII Format for Image Objects

6−16�Interleaf 7

I�I

Backing Store Object Types

Type 0

Field Comments

format mono/gray=0x20000000,
color=0x29000000 colormap

size number of entries
{R data}* var
{G data}* var
{B data}* var

{raster data}* var

Type 1
Field Comments

version currently 2
colormap size # bytes number of entries in the

colormap (0 or 256)
size # of bytes of compressed data
{data}* data compressed with Interleaf

algorithm colormap
{R data}* var
{G data}* var
{B data}* var

Type 255
Field Comments

version currently 2
byte count # bytes to skip (0=unknown)
size # bytes in path, EXCLUDING

terminator
pathname var null−terminated pathname

The ASCII version does not have a size field.

Null Backing Store
Object

Compressed
Backing Store
Object

Linked Backing
Store Object

Note

I�I

File Formats�7−1

This chapter describes the Interleaf binary format for image objects.
To use the information in this chapter, you need experience working
with image objects, rasters, and binary formats. You should also
know how to debug image object filters, because Interleaf does not
provide diagnostics or error messages for this process. If you are
familiar with these topics, the information in this chapter will help
you import images into an Interleaf document.

Interleaf uses the binary format for image objects to describe raster
images that have not yet been pasted into a document. This binary
file is separate from the ASCII markup file for a document.

Binary Format for
Image Objects

Binary Format for Image Objects

7−2�Interleaf 7

I�I

Image Object Binary Format

Structure of an Interleaf Image File

A binary image file has three parts, in the following order:

� general header

� image header

� raster data

The data in the general header and in the image header is in fields
of long and word size. A long field is 4 bytes, and a word field is two
2. The bytes are stored with the most significant byte first
(68,000−byte ordering).

The general header has two fields, shown in the following table:

Field Value Size

Magic number 894F5053 16 Long

Version 3 Word

The value of the version field changes with modifications to the
publishing software.

The General
Header

Note

Image Object Binary Format

I�I

File Formats�7−3

The image header has nine fields, shown in the following table.

Field Units (Value) Size

Horizontal resolution Pixels/inch Word

Vertical resolution Pixels/inch Word

Unique ID Number Long

X Location Pixels Word

Y Location Pixels Word

Width Pixels Word

Height Pixels Word

Depth Bits/pixel Word

Format 0 Word

The value of the unique ID field must be a number with a high
probability of not being duplicated by another image. Interleaf
supports only depths of 1 bit/pixel (for line−art images), 8 bits/pixel
(for greyscale or ‘pseudocolor’ contone images) and 24 bits/pixel
(for color images. The value of the format field might vary with
future releases of the publishing software; the format with a value of
0 will always be supported.

The horizontal and vertical resolutions of the image determine only
the initial size of the image. For example, if you have an image that
is 75 pixels high and 100 pixels wide and you set the horizontal and
vertical resolution to 25, when you paste the image in a document, it
will be 3 inches high and 4 inches wide. The X Location and Y
Location fields describe the location of the upper left corner of the
image relative to the upper left corner of the original, uncropped
image.

The Image
Header

Note

Binary Format for Image Objects

7−4�Interleaf 7

I�I

The raster data is stored as a series of height consecutive scan lines,
starting with the top scan line of the image. Each scan line is a
sequence of width pixels, starting with the left pixel in the scan line.

Left−to−right order on a scan line corresponds to most−significant to
least−significant order within a word. New scan lines always start at
a word boundary; the end of a scan line is padded on the right to the
next word boundary. Pixels are packed as tightly as possible within
words (16 line−art pixels or 2 contone pixels per word).

In line−art images, a pixel value of 0 represents black and a pixel
value of 1 represents white. In contone images, pixels signify
reflectances, with 0 representing black and 255 representing white.

Pasting a Raster File into a Document

Once you have translated your raster data into the Interleaf format,
you can paste it into a document.

1. Add the extension .img to the name of the raster file.

2. Move the raster file into your desktop directory.

3. Bring up your Interleaf 7desktop.

The raster file appears in the top left corner of your desktop,
represented by an image icon.

When you paste an image into a document, the image is in
uncompressed form. When you save the document in ASCII or
binary format, Interleaf 7 saves the image in compressed form.

Color Image Binary Format

Interleaf uses color image binary format for color image objects to
describe color images that have not yet been pasted into a
document. This binary file is separate from the ASCII markup file
for a document.

Raster Data

Color Image Binary Format

I�I

File Formats�7−5

Structure of Interleaf Image Files

Interleaf image files consist of three sections, described here.

� A header

� An optional colormap

� Raster data

field bytes
comments
magic number 4
0x894F5053
version 2
currently 4
resolution
 horizontal 2
pixels/inch
 vertical
2 pixels/inch
unique id 4
offset
 x 2 pixels
 y 2 pixels
dimensions
 w 2 pixels
 h 2 pixels
depth 2 1, 8, or 24
type 1 0=uncompressed, 1=compressed
format 4 mono/gray=0x20000000, RGB=0x29000000
colormap size 2
number of valid colormap entries

Fields are packed tightly together in the file. There is no padding
between adjacent fields.

Multi−byte quantities are stored in big−endian byte order (the most
significant byte is first in the file).

Header

Binary Format for Image Objects

7−6�Interleaf 7

I�I

The horizontal and vertical resolution fields determine the initial
physical dimensions of the image when it is pasted in a document.
These should be set to the resolution of the scanner that scanned
the image so that the image appears actual size when pasted into a
document. Alternatively, zeros can be supplied for these fields.
Then the image will be scaled so that each image pixel is
represented by one screen pixel.

The unique−id field should be set to a random number that has a
high probability of being unique. This field is used by the image
caching software to quickly determine whether the image has been
modified. One possibility is to use a time stamp for the unique−id. If
generating a unique−id is difficult, this field may be set to 0.

The x and y offset fields are used to keep track of how an image has
been cropped. They specify the offset of the image’s upper−left
corner from the upper−left corner of its Jprogenitor" image (the
original scanned image from which this image was derived). For
newly scanned images, these fields should have values of 0.

The format field describes various characteristics of the raster data,
such as the bit order, scanline padding, or color model. Only two
formats are used: 0x20000000 for monochrome and grayscale
images, and 0x29000000 for color images.

A non−zero value for the colormap size field indicates that the
optional colormap is present in the file and gives the number of
valid entries in the colormap. A zero value means the colormap is
not present. This field should be non−zero only if the depth field is 8
and the format field is 0x29000000.

A colormap is present only if the value of the colormap−size field in
the header is non−zero. If a colormap is present, it always occupies
768 bytes, regardless of the number of valid entries it contains. The
colormap is organized as follows (where N is the number of valid
entries as specified by the colormap−size field of the header).

N bytes of red intensity values (without gamma correction)
256−N bytes of padding (0 preferred)
N bytes of green intensity values (without gamma correction)
256−N bytes of padding (0 preferred)
N bytes of blue intensity values (without gamma correction)
256−N bytes of padding (0 preferred)

Optional Colormap

Color Image Binary Format

I�I

File Formats�7−7

Raster data is stored in scanline−major format. The data for the first
scanline is first in the file, followed by the data for the second
scanline, and so on. Within each scanline, the data representing the
leftmost pixel comes first in the file, followed by the data for the
next pixel, and so on.

In 1−plane images, pixels are represented by bits, which are packed
8 per byte. Most−to−least significant bit order within a byte
corresponds to left−to−right pixel order on the scanline. A J0" bit
corresponds to a black pixel, and a J1" bit corresponds to a white
pixel.

In 8−plane images, each pixel is represented by a byte. If the image
is grayscale, the bytes are interpreted as non−gamma−corrected
intensity values, with 0 representing black and 255 representing
white. If the image is a color image, the bytes are interpreted as
indexes into the colormap.

In 24−plane images, each pixel is represented by 3 bytes. The bytes
are interpreted as non−gamma−corrected intensity values for the red,
green, and blue components of the pixel. The component values are
stored in a scanline−interleaved fashion; the red components of all
of the pixels on a scanline come first, followed by the green
components for the scanline, followed by the blue components for
the scanline. A scanline looks like the following:

RRRRRRRRRR...GGGGGGGGGG...BBBBBBBBBB...

Each scanlines is padded to the next 2−byte boundary. For example,
if the width W of an 8−plane image is odd, each scanline consists of
W+1 bytes. In 24−plane images, the padding is added to the end of
each sub−scanline.

Raster Data

Binary Format for Image Objects

7−8�Interleaf 7

I�I

Compressed Raster Format

This section describes the format used by Interleaf to represent
compressed line−art images. Compressed raster format is used when
an image pasted into a document is saved. It saves both disk space
and memory. These images are identified in document and image
files by a format field with a value of 1.

The compression format is byte−oriented; that is, a compressed
image is represented by a sequence of fixed−size 8−bit units. By
comparison, other compression schemes use variable−length units or
units with a length other than 8 bits (for instance, 4−bit nibbles). The
byte−orientation of this scheme allows it to be implemented
efficiently.

A compressed image might have a structure similar to the following.

SCCCCCCSCCCCDCCCSDDDDDDDDSCCCCCSSCCCCCSCCCS

Each letter represents one byte, and the different letters represent
different types of bytes. There are three basic types of byte (labeled
S, C, and D in the figure). These are called signal, code, and data
bytes. Another way of thinking of a compressed image is as a
sequence of compressed scanlines. Each scanline begins with a
signal byte and extends up to (but does not include) the next signal
byte. The body of a scanline consists of zero or more code and data
bytes. In the example, every other scanline has been underlined.

Signal bytes mark the location of features in the compressed image.
There are four signal bytes. The simplest is the EOI byte, which has
a hexadecimal value of FF:

1 1 1 1 1 1 1 1

EOI signal byte

The EOI byte marks the end of the image. An EOI byte must
appear as the last byte in the compressed image, and no EOI byte
may appear at any other point in the image (although data bytes
with the same value as the EOI byte may appear throughout the
image). The final JS" in the sample image represents the EOI byte.

Signal Bytes

Compressed Raster Format

I�I

File Formats�7−9

The remaining three signal bytes mark the beginning of scanlines in
the compressed image. Each compressed scanline must begin with
one of these signal bytes. The different signal bytes correspond to
different methods of compressing the scanline. A RAW signal byte
begins scanlines that, because of their complexity, could not be
compressed. The hexadecimal value of a RAW byte is FA:

1 1 1 1 1 0 1 0

RAW signal byte

This type of signal byte is followed by data copied directly from the
original uncompressed raster. The entire uncompressed scanline,
including the final padding byte, is copied without alteration. The
third scanline of the example is a raw scanline.

The remaining two signal bytes identify compressed scanlines. In
both cases, the encoding method is the same; what differs is the
preprocessing the scanline is subjected to before being encoded.
The first of these signal bytes is the VXOR byte, whose hexadecimal
value is FC:

1 1 1 1 1 1 0 0

VXOR signal byte

Scanlines beginning with this byte are exclusive−ored before being
encoded. Each pixel of the scanline being compressed is
exclusive−ored with the pixel immediately above it (the pixel at the
same position in the preceding scanline of the uncompressed
image).

In typical images, pixels of the same color tend to be clustered
together. Consequently, the result of this operation is a scanline
that contains mostly J0" pixels, a property that is exploited by the
encoding scheme described in the next section.

The final signal byte is the HXOR byte. It too signals the start of a
scanline that has been exclusive−ored prior to encoding, but in this
case each pixel is exclusive−ored with its left neighbor (except for the
first pixel, which is left unchanged).

Binary Format for Image Objects

7−10�Interleaf 7

I�I

This type of preprocessing is used for the first scanline of the image
because it has no predecessor, but it may be used with other
scanlines as well. Sometimes horizontal exclusive−oring results in
better compression than vertical exclusive−oring. The hexadecimal
value of the HXOR byte is FB:

1 1 1 1 1 0 1 1

HXOR signal byte

After being preprocessed as described in this section, scanlines
consist of runs of zero bytes that are separated by strings of
non−zero terminator bytes. Usually there are several zero bytes per
run and only one or two terminator bytes between each pair of runs.
In the compressed image, these runs and intervening terminator
bytes are represented by code bytes. Compression results because a
run of several bytes can be represented by a single code byte.

There are three types of code byte. The RUN code byte encodes
runs up to 63 bytes long. It is identified by its two most significant
bits, which have values 1 and 0. The least significant 6 bits specify
the number of zero bytes in the run:

1 0 run length

RUN code byte

Runs longer than 63 bytes can be represented using multiple code
bytes. When two or more RUN bytes appear consecutively, their
run length fields are concatenated to form a larger run length. The
run length fields of two RUN bytes, for example, combine to form a
12−bit run length, enough to represent runs up to 4095 bytes long.
When run lengths combine in this manner, the first code byte
contributes the least significant bits of the run length, and the last
code byte contributes the most significant bits.

If a scanline ends with a run, the RUN bytes for that run can be
omitted. A common special case is a scanline that consists of a
single run. This occurs when two consecutive scanlines of the
original image are identical. In this case, the description of the
scanline is empty except for the initial signal byte. The fifth scanline
of the sample image is an example of this.

Code Bytes

Compressed Raster Format

I�I

File Formats�7−11

A second type of code byte is the TERM code byte, used to encode
the non−zero bytes that terminate runs. Its two most significant bits
have values of 1 and 1, and its least significant 6 bits encode the
value of the terminator byte:

1 1 terminator code

TERM code byte

Six bits are not sufficient to encode every possible 8−bit terminator
value, but they are enough to encode the most common ones. Every
byte containing a single contiguous sequence of 1 bits, as well as
every byte containing exactly two non−contiguous 1 bits, can be
represented. The correspondence between terminator codes and
terminator values is given in the following table.

Terminators that do not appear in the table are handled by placing a
0 in the terminator code field and following the TERM byte by a
data byte containing the actual terminator value. For example, a
terminator with a hexadecimal value of 83 is represented by the two
byte sequence C0, 83. The second scanline of the sample image
contains an instance of this situation.

Binary Format for Image Objects

7−12�Interleaf 7

I�I

 code value code value

(hex) (binary) (hex) (hex) (binary) (hex)

00 follows code byte 1D 01111100 7C
01 00000001 01 1E 11111000 F8
02 00000010 02 1F 00111111 3F
03 00000100 04 20 01111110 7E
04 00001000 08 21 11111100 FC

05 00010000 10 22 01111111 7F
06 00100000 20 23 11111110 FE
07 01000000 40 24 11111111 FF
08 10000000 80 25 10100000 A0
09 00000011 03 26 10010000 90
0A 00000110 06 27 10001000 88

0B 00001100 0C 28 10000100 84
0C 00011000 18 29 10000010 82
0D 00110000 30 2A 10000001 81
0E 01100000 60 2B 01010000 50
0F 11000000 C0 2C 01001000 48
10 00000111 07 2D 01000100 44

11 00001110 0E 2E 01000010 42
12 00011100 1C 2F 01000001 41
13 00111000 38 30 00101000 28
14 01110000 70 31 00100100 24
15 11100000 E0 32 00100010 22

16 00001111 0F 33 00100001 21
17 00011110 1E 34 00010100 14
18 00111100 3C 35 00010010 12
19 01111000 78 36 00010001 11
1A 11110000 F0 37 00001010 0A
1B 00011111 1F 38 00001001 09

1C 00111110 3E 39 00000101 05

If a run is less than 8 bytes long and its terminator byte contains
only a single 1 bit or two consecutive 1 bits, you can encode both the
run and terminator with a single code byte. This is called a COMB

Compressed Raster Format

I�I

File Formats�7−13

(for combination) code byte. Its most significant bit is 0, and it
contains a 4−bit terminator code followed by a 3−bit run length:

0 terminator code run length

COMB code byte

The terminator code can be one of the first 16 listed in the above
table. Like the TERM code byte, the COMB code byte can have a
terminator field of 0, indicating that the actual terminator value
follows. COMB bytes can also combine with prior RUN bytes to
represent runs longer that 8 bytes. In such a combination, the
COMB byte contributes the most significant 3 bits to the run length.

Any byte that is neither a signal nor code byte is considered a data
byte. A data byte can have any value, including values normally
reserved for signal and code bytes; context determines whether a
byte is a data byte. One example is the raw scanline described in this
section. In a raw scanline, every byte except the initial signal byte is
data byte.

Another example of a data byte is the byte following a TERM or a
COMB byte that has a 0 in its terminator field.

Consider a small image whose first two scanlines are as follows:

Scanline 1: FF FF FF C0 00 00 00 00 06 FF FF FF
Scanline 2: FF FF FF 08 00 00 00 00 0F FF FF FF

To compress this image, begin with the first scanline. Since there is
no previous scanline, use the horizontal method of preprocessing.
Replacing each bit (except for the first) by itself exclusive−ored with
its left neighbor yields:

80 00 00 20 00 00 00 00 05 00 00 00

The bits participating in the exclusive−or operation are bits from the
original image. To compute the third bit, for example, you use the
original second bit, which has a value of 1, rather than the
preprocessed second bit, which has a value of 0.

Data Bytes

Example

Binary Format for Image Objects

7−14�Interleaf 7

I�I

To encode this scanline, begin with the first byte, which has a
hexadecimal value of 80. The terminator code for 80 is 08, so this
byte is encoded by a TERM code byte with a value of C8.

Next is a run consisting of two zero bytes terminated by a byte of 20.
This combination can be represented by a COMB code byte with a
value of 32.

Next is a run of 4 bytes that is terminated by a 05. A COMB byte
cannot encode this terminator, so use a separate RUN byte (with a
value of 84) and TERM byte (with a value F9).

The final run of 3 bytes does not appear in the encoded scanline.
The complete encoded scanline (including the initial HXOR signal
byte) is:

FB C8 32 84 F9

The second scanline can be vertically exclusive−ored. As before, this
operation is carried out entirely with original data. The result is:

00 00 00 C8 00 00 00 00 08 00 00 00

The most compact way of encoding the initial run and terminator is
to use a COMB code byte for the run and a data byte for the
terminator. These have values of 03 and C8. The next run and
terminator can be encoded by a single COMB byte with a value of
24, and the final run is omitted as usual. The compressed scanline
(including the initial signal byte) is therefore:

FC 03 C8 24

With the final EOI signal byte appended, the size of the compressed
image is 10 bytes, a factor of 2.4 smaller than the original image.
This low compression ratio is due to the small size of the sample
image. Generally, the compression ratio increases as the size and
resolution of the original image increase. Compression ratios
ranging from 10 to 20 are typical.

I�I

File Formats�8−1

This chapter describes the <!Include, ...> commands. With the
<!Include, ...> commands, you can specify the name of a separate
ASCII file that you want to incorporate into your current Interleaf
ASCII format file.

The Include Commands

The Include Commands

8−2�Interleaf 7

I�I

Using the Include Commands

Using Pathnames

Use the <!Include, pathname> command to insert an entire ASCII
markup file into the current file. You can use the <!Include, ...>
command to insert many different files together in one file.

Use the <!Include Declarations, pathname> command to insert only
the declarations from an Interleaf ASCII file in the current file. The
<!Include Declarations, ...> command takes all the declarations
from a specified file and places them at the top of your current file.
It incorporates component masters, frame masters, autonumber
masters, and table masters into the current file.

To specify the document you want to include with <!Include, ...>
or <!Include Declarations, ...>, use either an absolute pathname or
a relative pathname. Relative pathnames are interpreted in relation
to your desktop. If you omit the pathname and give only a filename,
the desktop is the default pathname.

You can specify any pathname that is valid for your operating
system. Pathnames can be up to 80 characters long. You must supply
the pathname completely; wildcards are not allowed. If you use
certain characters in a pathname, you must enclose the entire
pathname in quotation marks. For a list of these characters, see
Quoting Conventions in the chapter ASCII Format Basics.

Nesting Include Commands

You can nest the Include commands up to 10 levels deep; your
current file can contain an <!Include, ...> command to include a file
that contains an <!Include, ...> command that includes another file,
and so on, to four levels of inclusion.

Using Templates

You can use the <!Include Declarations, ...> or the <!Include, ...>
command to put a template of declarations in your current file. This
way, you can use the template to format many separate ASCII
documents.

Using the Include Commands

I�I

File Formats�8−3

� To include a template file in an existing ASCII file:

1. Using a text editor, open the ASCII document you want to mark
up.

EDUCATIONAL FILING SYSTEMS, INC.

123 Alphabet Avenue

Westville, MA 01678
(413) 774-4055

Ernest MacIntosh

July 25, 1992

2. At the top of the file, before the first line of text (where markup
normally begins), type the following:

<!Include Declarations, pathname of template file>

. 9. 9. 9 9or 9. 9. 9. <!Include, pathname of template file>

Even though the file open on your desktop might not start with
the line <!OPS, ...>, Interleaf a treats it as a marked−up file
since the <!Include, ...> line contains the necessary
<! characters to signal a marked−up file.

3. Your document now has the same format specified in the
template file. You can use all the document components defined
in the template. On the line that precedes each paragraph,
section head, or other component, type the component name
from the included file in command form (for example, <date>
and <business>).

In Figure 8−1, the absolute pathname of the template is
specified. You can also use a relative pathname, such as
address_template.doc, or, if the template is in a folder called
ascii_temp, ascii_tmp.fdr/address_template.doc.

The Include Commands

8−4�Interleaf 7

I�I

<!Include Declarations,

<date>

July 25, 1992

<business>

EDUCATIONAL FILING SYSTEMS, INC.

<address>

123 Alphabet Avenue

Westville, MA 01678

<telephone>

(413) 774-4055

<name>
Ernest MacIntosh

<space>

my_workstation:/u/disk1/my_login/address_template.doc>

 F i g u r e 8 − 1 . D o c u m e n t w i t h I n c l u d e c o m m a n d .

4. Save the document and exit the editor.

5. If you did not create the document in your desktop directory,
copy it to your desktop.

6. Open your desktop and the document.

July 25, 1992

EDUCATIONAL FILING SYSTEMS, INC.

 1 2 3 A l p h a b e t A v e n u e
 W e s t v i l l e , M A 0 1 6 7 8

Telephone:

Ernest MacIntosh

(413) 774−4055

7. When you close the document, Interleaf 7 asks if you want to
save the document.

When you choose Save on the Close dialog box, Interleaf 7 saves
the document as a Fast document; it appears on your desktop as a
document icon.

Using the Include Commands

I�I

File Formats�8−5

If you want to edit the document outside Interleaf 7, choose Save�
ASCII before you close the document. The ASCII format version of
the document also appears on your desktop as a document icon, but
other software programs can read the document.

On the Properties dialog box for a document or its containing
directory, you can change the default Save format to Fast, ASCII, or
Inherit. If you change the directory’s Save format to ASCII and all
the directory contents are set to Inherit (the default), Save on the
Close dialog box saves these documents as ASCII documents.

When you open and then save a document that contains an Include
command, Interleaf 7 combines the information from the included
file and the current file into the current file. If you make subsequent
changes to the included file (a template, for example), the
document does not reflect these changes. The information from the
included file has replaced the <!Include,...> command.

You can place an include statement anywhere in markup, but the
effects may be unpredictable.

Note

The Include Commands

8−6�Interleaf 7

I�I

Assembling a Document

In Figure 8−2, the screen terminal displays the contents of an ASCII
file called include.doc. When you open this file on the desktop, it
becomes an Interleaf 7document.

The template declarations and component definitions are in the file
template. A large portion of text is in the file part. A previously
created graphic is in the file frame. More text is in the file part2. You
can assemble a complete document from these parts by using the
Include command, as shown in Figure 8−2.

 F i g u r e 8 − 2 . O f f l i n e d o c u m e n t a s s e m b l y .

For more complex document assembly outside the desktop, you can
include many files of ASCII text and frames about a variety of
topics or product parts. You can assemble these pieces in different
order. This way, you can use <!Include, ...> commands to
accomplish conditional document assembly.

You can also use database applications to assemble Interleaf 7
documents from a variety of stored ASCII data. These database
applications can use stored strings of <!Include, ...> commands to
assemble complex documents.

Using the Include Commands

I�I

File Formats�8−7

Inserting Frames in an ASCII File

You can use the <!Include, ...> command to incorporate frames in
your file. Since frames are the containers for graphics objects, they
must be included if their contents are to appear. The following
example shows how to insert frames in an ASCII file using the vi
editor on the Sun UNIX platform. You can also perform this
procedure using the native editor on other platforms or with the
Host File Editor in Interleaf 7.

1. Create the frames in an Interleaf document and choose Save�
ASCII.

2. Use the editor to put the frame definitions in separate ASCII
files by typing the following:

% vi filename.doc <RETURN>

3. Use the :se nu command to turn on visual line numbers.

The line numbers make it easier to locate blocks of text.

4. Search for the frame by typing

/<Frame, <RETURN>

This command finds the first frame in the ASCII file. The
screen display resembles the following:

405 WP and Electronic Typewriters

406 <Frame,

407 Name = ”Following Text”
408 Placement = Following Text,

409 Horizontal Alignment = Center,

5. Search for the end of the frame by typing the following:

/))> <RETURN>

This command puts you at the end of the frame command. Note
the line numbers in the sample display:

564 667,6))>

565

566 <paragraph>

The Include Commands

8−8�Interleaf 7

I�I

6. Save the frame as a separate ASCII file by typing

:406, 564w frame1 <RETURN>

This command creates a separate ASCII file named frame1 in
the directory or desktop in which you are working. A computer
paper icon named frame1 appears on your desktop.

7. Use the pwd command to check the pathname to the newly
created ASCII file, frame1. The full pathname is required in the
<!Include, ...> command on the UNIX platform.

You can edit an ASCII markup file by inserting an <!Include,...>
statement for each file containing a frame definition. Put the
<!Include,...> statement for a file containing a frame definition at
the point in your ASCII file where you want the frame to appear.
For example:

<paragraph>The figure below shows the placement of the
cursor keys.
<!Include, /usr/my_login/desktop/frame1>

The <!Include,...> command does not have to appear on a line by
itself.

I�I

File Formats�A−1

If you do not provide a specific value for a given property in an
input file, Interleaf automatically supplies the default value for that
property. This appendix specifies the default values that the ASCII
loader provides. Default settings need not be explicitly stated for
input; they are automatically supplied. Non−default settings
contained in input files are preserved.

The Interleaf ASCII defaults described here may not be the same as
those that appear when you create a document with Interleaf 7.
Refer to Default Values in the chapter ASCII Format Basics for more
information.

Default Values for ASCII
Format Documents

Default Values for ASCII Format Documents

A−2�Interleaf 7

I�I

Default Values

Name = ”page”
Starting Page # = Inherit
Page # Prefix = No
Frozen Page Numbers = Off

Header Page = On
Double-Sided = No
Manual Sheet Feed = yes
Print Rev Bars = yes
Print Strikes = yes
Print Deletion Markers = yes
Print Underlines = yes
Underline at Descender = No
Orientation Inverted = No
Spot-Color Separation = Off
Measurement Unit = inches
Final Output Device = ”cx”
Default Printer = ”nearest-cx”
Line Spacing Units = points
Font Size Units = points
Measurement Precision = 2
Float Precision = 2
Points Precision = 1
Zoom = 1
Component Bar Width = .906 inches
Default Page Stream Name = ”page”

Orientation = Portrait
Turned Pages = 0
Columns = 1
Vert. Just. = On
Height = 11 inches
Width = 8.5 inches
Top Margin = 1 inch
Bottom Margin = 1.1 inches
Left Margin = 1.4 inches
Right Margin = 1.4 inches
Inner Margin = 1 inch
Outer Margin = 1 inch
Margins = ”Left/Right”
Vertical Margins = Add
First Page = not set (indicates single-sided printing)
Bleed = no
Hyphenation = Off
Consecutive Hyphens = Any

Page Number
Stream

Document

Page

Default Values

I�I

File Formats�A−3

Allow Break After Hyphen = Yes
Balance Columns = On
Margin Stretch = 200%
Margin Shrink = 50%
Frame Margin Shrink = 10%
Feathering = On
Maximum Feathering = 8%
Vert. Just. Pages = On
Depth At Page Break = 95%
Depth No Page Break = 90%
Baseline to Baseline = No
Revision Bar Placement = Auto
Turned Pages = 0
Frozen Autonumbers = No

Metric page defaults:
Top Margin = 25 mm
Bottom Margin = 28 mm
Left Margin = 35 mm
Right Margin = 35 mm
Inner Margin = 25 mm
Outer Margin = 25 mm
Width = 210 mm
Height = 297 mm
(Document Measurement Unit = mm)

Symbol Type = Arabic
Prefix = none
Suffix = .
Starting Value = 1
Last Only = No
Show = Yes

Name = para
Top Margin = 0 inches
Bottom Margin = 0.14 inches
Left Margin = 0 inches
Right Margin = 0 inches
First Indent = 0 inches
Indent Count = 1
Begin New Column = No
Begin New Page = No
Composition = Overset
Letterspacing = No
Track Kern Spacing = No
Line Spacing = 1.31 lines
Alignment = Justified
Font = Times 10

Autonumber

Component

Default Values for ASCII Format Documents

A−4�Interleaf 7

I�I

Alt Font = Times 10*
Hyphenation = 5 (normal)
Straddle = No
Orphan Control = 2
Widow Control = 2
Allow Page Break Before = Yes
Allow Page Break Within = Yes
Allow Page Break After = Yes
Left Tab = 0, .75, 1.5, ... inches
Read Only = No

Name = ”following Text”
Placement = Following Text
Height = 1 inch
Width = 2 inches
Horizontal Reference = Page With Both Margins
Vertical Reference = Page With Both Margins
Horizontal Alignment = Center
Vertical Alignment = Bottom
Repeating = No
On Anchors Page = Yes
Begin On Anchors Page = Yes
End On Anchors Page = Yes
Auto Edit = No
Same Page = Yes
Size Contents To Width = No
Size Contents To Height = No
Shared Contents = No
Numbered = Off, no autonumber
Superscript = No
Overlap = No
Not Selectable = No
No Border = No

A-Page = No
Allow Page Break After = Yes
Allow Page Break Within = Yes
Begin New Column = No
Begin New Page = No
Border Visible = Yes
Border Weight = 1
Columns = 1
Column N Ruling Visible = Yes
Column N Ruling Weight = 1
Column N Width = 1 units
Top Margin = 0.08 inch
Bottom Margin = 0.08 inch
Left Margin = 0

Frame

Table and
Master Table

Default Values

I�I

File Formats�A−5

Orphan Control = 2 rows
Widow Control = 2 rows
Page Break Rulings = Yes
Straddle = No
Right Margin = 0

A-Page = No
Allow Page Break After = Yes
Allow Page Break Before = Yes
Begin New Column = No
Begin New Page = No
Bottom Margin = 0.0266 inch
Font = font
Footer = No
Header = No
Top Margin = 0.0266 inch
Read Only = No
Border = No

Auto Edit = Yes
Left Ruling Visible = Yes
Left Ruling Weight = 1
Size Contents To Width = Yes
Straddle = 1
Top Ruling Visible = Yes
Top Ruling Weight = 1
Vertical Alignment = Top
Not Selectable = No

C0 = 0, 0, 0, 0,
C1 = 0, 0, 0, 3.125,
C2 = 0, 0, 0, 6.25,
C3 = 0, 0, 0, 12.5,
C4 = 0, 0, 0, 25,
C5 = 0, 0, 0, 50.001,
C6 = 0, 0, 0, 75.001,
C7 = 0, 0, 0, 100

Row and
Master Row

Cell

Color

Default Values for ASCII Format Documents

A−6�Interleaf 7

I�I

Pattern
P0 = fdfd0000dfdfdfdfdfdf0000fdfdfdfdfdfd0000dfdfdfdfdfdf0000fdfdfdfd,

P1 = 060628286e6e8282ecec2828c0c08282060628286e6e8282ecec2828c0c08282,

P2 = 82820606080828286e6e88888080e0e082820606080828286e6e88888080e0e0,

P3 = 0c0c0c0c0c0c0c0cfcfcfcfc000000000c0c0c0c0c0c0c0cfcfcfcfc00000000,

P4 = 08080c0c0c0c1c1cfcfc78780000000008080c0c0c0c1c1cfcfc787800000000,

P5 = ff,

P6 = c0c06060303018180c0c060603038181c0c06060303018180c0c060603038181,

P7 = 8181030306060c0c181830306060c0c08181030306060c0c181830306060c0c0,

P8 = ffffffffffffffff0000000000000000ffffffffffffffff0000000000000000,

P9 = f0,

P10 = f0f078783c3c1e1e0f0f8787c3c3e1e1f0f078783c3c1e1e0f0f8787c3c3e1e1,

P11 = 0f0f1e1e3c3c7878f0f0e1e1c3c387870f0f1e1e3c3c7878f0f0e1e1c3c38787>

* The alternate font varies according to the value of
 ld-get-vars :japanese-default-font.

I�I

File Formats�B−1

This appendix lists the error messages you might see while your
ASCII document is loading, and gives the loader response to most
of those errors.

ASCII Format Error
Messages

ASCII Format Error Messages

B−2�Interleaf 7

I�I

ASCII Format Error Messages

Message Loader Response

%d Backspace characters were discarded. Ignored; loading continues.

(Left/Right) page header/footer incorrect. Assumes you want a Right header.

A ">" was expected but not found. Skips to next >.

A class of that name has already been defined. Ignores the new one.

A header or footer is redefined. Uses the old one.

An "=" is missing. Ignores everything until the comma or the >.

An illegal character was found. Clears the high bit.

An undefined font is referenced. The current font remains unchanged.

"Attach previous" is not allowed. Ignored; loading continues.

Autonumber Stream not defined. Uses the default autonumber.

Autonumber restart on non level one token. Ignored; loading continues.

Bad Profile format. Ignored; loading continues.

Cannot open include file. Ignored; loading continues.

Chart label has been truncated to 240 characters. Ignored; loading continues.

Chart logarithm base must be greater than 1.

Class "..." has not been defined yet. Creates one with the default values.

Component name longer than 9 characters. Truncates the name.

Discretionary hyphen was ignored (n times). Ignored; loading continues.

Distance is too big. Truncates the distance to 36 inches.

Duplicate Master Table.

Duplicate Master Row.

ASCII Format Error Messages

I�I

File Formats�B−3

ASCII Format Error Messages (continued)

Message Loader Response

Error in Autonumber level. If the number is too large, it is truncated to 8 and
Arabic is used. If the final > is omitted, whatever
has been defined up to the last level stands, and
the last level takes its definition from the preced−
ing level.

Error in frame height autosizing specification.

Error in frame width autosizing specification.

Error in loading a diagram. Loads the empty frame.

Error in repeat frame.

Error in table column number.

Expected "Left," "Right," "Center," or "Both". Uses the default.

Expected "Portrait" or "Landscape". Uses JPortrait."

Expected "Yes," "No," "On," or "Off". Uses the default.

First Indent is not consistent. Truncated to fit. Negative indent overlapped page
edge, or positive indent exceeded right margin.
This error may be caused by inconsistent margin
settings.

‘First page’ is incorrect. Ignored; loading continues.

Font number is too high. Assigns new number (maximum is 16,383).

Composition must be ‘Optimum’ or ‘Overset’.

Error in equation: Extra characters after
left/right parenthesis.

Frame has no diagram. Creates an empty frame.

Frame not allowed in microdocument. Discards the frame. The rest of the document
might be garbled as a result.

Height is too big. Truncates the diagram to fit.

ASCII Format Error Messages

B−4�Interleaf 7

I�I

ASCII Format Error Messages (continued)

Message Loader Response

Hex value: xx. If it is still an illegal character, it is converted to a
space.

Horizontal alignment is wrong. Horizontal Alignment may not be specified on At
Anchor frames. Otherwise, Jcenter" is used.

Horizontal alignment not allowed with ‘At Anchor’
frame.

Ignored; loading continues.

"Hyphenation" is incorrect. Assumes JOff."

Incorrect placement of frame. Ignores the placement.

Incorrect use of Straddle.

"Include Declarations" follows some non−declaratives. It is treated as JInclude."

Include file is not an ASCII file. Ignores the file.

Incorrect placement of frame. Ignored; loading continues.

Incorrect Track Kerning value.

Invisible anchor property ignored for Numbered
frame.

A numbered frame cannot have an invisible an−
chor. If both are specified, the invisible property is
ignored.

Left/right margins are not consistent. The component margins are set to zero. Page mar−
gins are too big if there is not at least .5 inch of
room for text.

(Left/Right) page header/footer incorrect. Assumes JRight."

Line Spacing is out of range. Cannot be less than the line height.

"Lines" is used incorrectly. Uses 1/6 inch per line.

Master Diagramming object ’%S’ was previously de−
fined

Master diagramming object ‘%S’ was not defined Last instance is used for master props.

Master Frame ‘%S’ was previously defined. The properties of the first master frame definition
are used as the master for frames with this name.

ASCII Format Error Messages

I�I

File Formats�B−5

ASCII Format Error Messages (continued)

Message Loader Response

Master table ‘%S’ has no valid rows to create. Defaults are set up.

Measurement must be > 0.0. Uses the default.

Measurement must be >= 0.0. Uses the default.

Missing end of subcomponent. Ignored; loading continues.

More than one diagram in frame. Discards all except the first diagram.

More than one Master Frame with the same name. Uses the properties of the first master frame defi−
nition for frames with this name.

Multiple tab stops at same position. Uses the first one.

Name ‘=’ is allowed only in Class Defaults. Ignored; loading continues.

Negative margin goes off page. Truncates the margin to the page margin.

No argument was found after ‘=’.

No master row ‘%S’ in the table.

No master table ‘%S’.

No master frame. Creates a default master frame. Given only for
shared−content frames when the master frame is
expected to have contents.

Numbered property ignored in At Anchor frame. The numbered information is ignored.

Numbered property ignored in Repeating frame. The numbered information is ignored.

"Page Number Type" is incorrect. Uses JArabic."

Page size and margins are not consistent. Page margin values are reset to the defaults.

"Placement" must precede "Alignment",
"Baseline", and "Same Page".

Uses the default.

Printer type is incorrect. Uses the default.

Profiles on the same side may not overlap. Ignored; loading continues.

ASCII Format Error Messages

B−6�Interleaf 7

I�I

ASCII Format Error Messages (continued)

Message Loader Response

"Shared Contents" used incorrectly. Keeps the diagram, and JShared Contents" is
turned off.

Some text was seen before any component was
named.

Generates a default component.

Subcomponent property ignored in master
components.

A master cannot be a submaster component. If the
Subcomponent property is set to Yes in a master
definition, it is ignored.

Starting Value incorrect. Sets the value to 1.

Tab stops may not be set in Class Defaults. Ignores these tabs.

Tab origin incorrect

Superscript property ignored in non−numbered frame. Ignored; loading continues.

The closest font has been substituted. For example, rounds Times 9 to Times 8.

The document is not English language. Ignored; loading continues.

The font number has been redefined. Uses the old definition.

The format is, e.g., "FONT = F1". Uses the default.

The format of a hex number is incorrect. Ignores the value.

The frame is incorrect.

The header or footer is too long. Skips the rest, up to comma.

The hex value is not correct. Ignores the value.

The indent count value is incorrect. Uses the default.

The name of the font is not recognized. Uses the <!Font Definitions, ...> default.

The number specifying the measurement is missing. Uses the default.

The orphan value is incorrect (1 through 15). Uses the default.

The point size is way out of range. Assumes 10 point.

ASCII Format Error Messages

I�I

File Formats�B−7

ASCII Format Error Messages (continued)

Message Loader Response

The profile line count must be between 1 and 32767. Ignored; loading continues.

The profile start line must be between 1 and 32767. Ignored; loading continues.

The property is not allowed in a microdocument.

The string of characters seen is too long to be legal. Uses the truncated string; often causes further
errors.

The tab measurement is incorrect. Ignores the whole line.

The unit of measurement is unknown (e.g., 1.5
inches).

Uses the default.

The widow value is incorrect (1 through 15). Uses the default.

The word "..." is incorrect. Ignores everything until the next comma or >.

There are no row names specified in the table.

There are too few cells in the table row. Fills out the row.

There are too many cells for the number of columns
in the table.

Starts a new row.

There is no declaration named "...". Passes the string into the document.

This declaration must precede all components. Results are unpredictable.

This software version expects ASCII Format Ver. 7.X

Too many </F>. Nothing happens; the font remains the same.

Too many tokens in document. Discards the object associated with the token.

Too many tab stops. Ignores the extras (maximum is 30).

Top/bottom margins are too big. Accepts both margins.

Underlining (backspace/underscore) was removed.

Unbalanced parentheses in diagram. Loads diagram, but in error.

Unexpected character ‘%c’.

ASCII Format Error Messages

B−8�Interleaf 7

I�I

ASCII Format Error Messages (continued)

Message Loader Response

Unrecognized Horizontal Reference.

Unrecognized Vertical Reference.

Unrecognized component content keyword,
assuming Private.

Unknown Autonumber Symbol Type. Uses JArabic."

Valid wordspace/Letterspace values are 0 through
63.99

Value out of range

Use "Fn" with n = 1 or more. Uses the default.

‘Vertical Alignment’ not allowed unless ‘At Anchor’
frame.

Ignored; loading continues.

"Vertical Alignment" is wrong. Uses ‘‘Top.’’

I�I

File Formats�C−1

This appendix lists the International character set hexadecimal
codes used in Interleaf ASCII markup. For markup of special
characters, see the chapter ASCII Format for Text.

Hexadecimal Codes

@��	�� ��	� �����

�'+��

����	���

J�J

;������������ �'������� ��� '�- ����� ��� 8���%��� � �����

8 � � � # $ ') + ? � � � * � �

888@8 8

8�'@� �

8��@� � > ? @ A B C D . 0 E F / G � H �

8#+@� � � � � � � � 	 � � I J K L M N �

8'#@# O () * � !
 P Q ; R S & = , + #

8+8@$ 8 T U % 9 V 2 < W 6 X Y Z [\] $

8?'@' ^ � $ � � � � � ' � 1 7 � " � � '

���@) _ � � �
 � 3 - # 5 ` a b c d)

��+@+ +

�##@? ?

�'8@� e f g h i j k l m n o p q r �

�)'@� s t u v w x y z { | } �

�?�@� ~ � � � � � � � � � � � � � � � �

�8+@* � � � � � � � � � � � � � � � � *

��#@� � � ¡ ¢ £ ¤ ¥ ¦ 4 § ¨ © ª « ¬ �

�#8@� ­ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ �

�$'@�8 : ½ ¾ ¿ À � Á Â Ã �8

�)�@�� Ä Å Æ Ç È É ��

�++@�� Ê ��

�8#@�� Ë Ì Í Î Ï Ð Ñ Ò Ó ��

��8@�# Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã �#

��'@�$ ä å æ ç è é ê ë ì í î ï ð ñ ò ó �$

�$�@�' ô õ ö ÷ ø ù ú û ü ý þ � � � � � �'

�'+@�) � � � � � 	
 � �
 � � � �)

�+#@�+ � � � � � � � � � � � � � � � �+

#88@�? ! " # $ % & ' () * + , - �?

#�'@�� . / 0 1 2 3 4 5 6 7 8 9 : ; < = ��

@��	�� ��	� �����

J�J

���� ����	
���',

#��@�� > ? @ A B C D E F G H I J K L ��

8 � � � # $ ') + ? � � � * � �

I�I

File Formats�D−1

This appendix describes aspects of Interleaf ASCII markup
procedure that may be of special interest to filter writers, such as
the differences between input and output markup requirements.
Major topics are listed in alphabetical order.

Autonumbers

Autonumbers are automatically generated by Interleaf. Autonumber
values supplied by other means cannot be guaranteed to behave
properly since they may produce conflicts with automatically
generated ones. Therefore, you should not determine autonumbers
manually for input.

If a document containing autonumbers is saved in ASCII and pasted
into a book, the document must be resaved before the ASCII
markup accurately reflects the new autonumber values. Until it is
resaved, the document displays correct values but the ASCII
markup contains the old values.

Pasting
Autonumbers
Into a Book

Filter Writing

Filter Writing

D−2�Interleaf 7

I�I

Components (<!Class, ...> objects)

Default values for properties of component objects can be
determined several ways. For more information, refer to Default
Values in this appendix and <!Class Defaults,...> Declaration in the
chapter ASCII Format for Text.

Default Values

The procedure for assigning default values is different for
component objects and frame objects. The differences are outlined
and discussed in detail in the chapter ASCII Format for Text.

Default values for component objects are assigned the following
way:

<!Class, ...> Declaration (component). When a <!Class, ...>
declaration is encountered by the Interleaf ASCII loader, a master
component is created with initial properties taken from a set of
default values. These default values are listed in Appendix A,
Default Values for ASCII Format Documents, subject to modification
by the optional <!Class Defaults, ...> declaration. Any value
explicitly specified for a property in that <!Class, ...> declaration
will override the default on the master.

<component, ...> Command. When the Interleaf ASCII loader
finds a <component, ...> command, a component is created with
initial properties taken from the master component specified in a
previous <!Class, ...> declaration for the given component name.
Any value explicitly specified for a property in the <component, ...>
command will override the master’s value on the new component.

With respect to default values, frames do not behave like
components.

When the Interleaf ASCII loader finds a <Frame, ...> command, a
frame is created whose initial properties are listed in Appendix A,
Default Values for ASCII Format Documents. Initial values are not
taken from the master frame, as is the case with components.
Following this, the loader changes any properties specified in the
<Frame, ...> markup that diverge from the defaults.

Components

Frames

Fill Property

I�I

File Formats�D−3

Diagramming Markup

Comments are not allowed inside diagramming markup, with the
exception of microdocuments.

Markup for all diagramming objects must occur inside the markup
of a containing frame.

The new saved Lisp data field in diagramming markup is the fourth
field. When empty, it appears as two consecutive commas after the
third field in the markup for most objects; for groups it is indicated
by a comma after the third field, before the opening parenthesis for
the first object in the group.

End Commands

End commands are required at the end of markup for the following
Interleaf objects:

� Tables (use the <End Table> command)

� Microdocuments (use the <End Text> command)

� Inline components (use the <End Sub> command)

Fill Property

On input, when Fill = off, hard returns are inserted at the end of
each line. This is especially useful for loading text containing tabular
material.

When Fill = blank, a blank is inserted at the end of each input line if
there is not already a blank there and if it is not the last line of a
component. This property is useful for treating files that have been
prepared with word processors, or with editors that do not ensure
blanks at line endings. When line breaks on the word processor
differ from those in Interleaf 7, using blank ensures that words do
not run together. Use this property in a <!Class Defaults, ...>
declaration if you want it to apply to all component classes.

Filter Writing

D−4�Interleaf 7

I�I

Font Tokens and Font Inheritance

A font token must be the first item contained in the contents of an
inline component, and a font token must appear after each <End
Sub> marker.

When you save a document, Interleaf assigns font numbers on the
basis of the fonts available at a particular time in a particular
installation. Do not assume that the correspondence between font
numbers and actual fonts remains constant across versions of
Interleaf. If fonts are added or removed, the numbers for some or
all fonts can change.

Assign your own numbers in the font declarations and maintain
them consistently when you mark up documents. The software
converts your numbers to the corresponding fonts when a document
is loaded.

If you write a program that translates Interleaf ASCII format to
another format, your program must interpret the <!Font
Definitions, ...> declaration so that, for example, the command
<F3> (or other Fn) is properly translated as italic.

</F> command N for input only. Use this command to revert to
the previous font of a component. It cannot be used to reference a
font in a separate component. This command may also be used to
terminate a <FI> or a <FB> command.

<FBI> command N for input only. This command adds bold and
italic to the active font. Use the </F> command to terminate the
command.

<FI> command N for input only. This command adds italic to the
active font. Use the </F> command to terminate the command.

<FB> command N for input only. This command adds boldface to
the active font. Use the </F> command to terminate the command.

Font inheritance applies to inline components only. Through font
inheritance, you can set relative inheritance for many properties,
including text properties. This markup can be complex. For more
information, refer to Inline Components in the chapter ASCII
Format for Text.

Font Tokens

Font Inheritance

Informational Markup

I�I

File Formats�D−5

<F0> command. Markup for text properties cannot be added to a
default <F0> font token. For example, it permissible to write
<F8@property...> but not <F0@property>.

Frames

All frame width and height values are expressed in output in
addition to their margin specifications, if any. See the chapter ASCII
Format for Text for details on other ways of marking up width and
height for frames.

Table cells that contain graphic objects are a special case of frames
and have special properties. Refer to the chapter ASCII Format for
Tables for details.

Informational Markup

The following items appear in output files but are ignored by the
loader. Their values are recomputed on the fly as the document is
loaded. The values as output in ASCII are for the information and
convenience of filter writers.

� Autonumber values

� Line breaks (in markup: <SR>)

� Page breaks (in markup: <|, ...>)

� Page numbers on floating frames

� Edit State markup (refer to the chapter ASCII Format for
Graphics Objects)

� Absolute frame width or height values are output when the
specified size is relative to page, column size, or to the size of
the contents.

� Width of soft−state documents

� Hidden property

The <!End Declarations> declaration serves only as a convenience
to delineate the end of the declarations and the beginning of the
document proper. It is ignored by the loader but is useful if you are
writing a filter that wants to skip over all declarations.

Other Information
in ASCII Files

Filter Writing

D−6�Interleaf 7

I�I

Object names are always quoted on output. This assures consistency
of naming style and eliminates any ambiguity between commands
and object names. This fact can be used in filters designed to read
documents generated by Interleaf 7.

Input Markup

The following items are convenience commands that allow you to
insert markup in an ASCII file that is then read and interpreted by
the ASCII loader. The dumper never outputs these commands.

� </F>, <FB>, and similar commands. Refer to Font Tokens and
Font Inheritance in this appendix.

� Convert−to−Outline object (converts text string into outline font
characters). Refer to the chapter ASCII Format for Graphics
Objects for details.

Interleaf ASCII Method Storage

For releases of Interleaf 5 with an ASCII version number 8 and
higher, Lisp expressions may be attached on output. This affects
both diagramming (graphics objects) and text. Refer to the chapters
ASCII Format for Text and ASCII Format for Graphics Objects for
more information.

Microdocuments

Properties for microdocuments are similar but not identical to
properties declared under the <!Page, ...> Declaration. Refer to
<!Page, ...> Declaration in the chapter ASCII Format for Text and
Microdocuments in the chapter ASCII Format for Graphics Objects
for more information.

Names

When naming objects (components, subcomponents, or frames, for
example) for input, the following procedures must be followed:

� Names may not exceed 19 characters.

Newlines and Broken Words

I�I

File Formats�D−7

� Names must not be duplicated for the same object type. For
example, no two master components (classes) can have the same
name. A frame and a component, however, may share the same
name.

� Component names may not clash with reserved Interleaf names
such as cell. A component whose name is on the following list of
reserved names, or a component that uses a name reserved for
font markup (for example, F0), must have its name in quotes. In
general, we recommend that all component names be enclosed
in quotes; this is always permitted, and component names are
quoted on output in any case.

Autonum LeftPageHeader
Cell Mail
Comment Master Row
Data Note
EndInline PageFooter
EndSub PageHeader
EndTable Query
EndText Ref
FirstLeftPageFooter Rev
FirstLeftPageHeader RightPageFooter
FirstPageFooter RightPageHeader
FirstPageHeader Row
FirstRightPageFooter SP
FirstRightPageHeader SR
FJ Tab
Frame Tab−
HR Tab−dash
Index Tab.
Language Table
LeftPageFooter Tab_

Newlines and Broken Words

In Interleaf 7, the system has a maximum output line−length of 79
characters. Anytime a text character is output to an ASCII format
file so that its column position would exceed that value, a new line is
started, sometimes causing a word to be broken across two lines
(hyphenation).

Filter Writing

D−8�Interleaf 7

I�I

The ASCII dumper tries to enhance readability by starting a new
line anytime it outputs a character immediately following a space
when the output column count is over 66. Also, newlines may be
started before processing markup for certain tokens such as
autonumbers and font changes.

In the case of font changes, when the output column count is greater
than 72, a newline is generated prior to output of the font markup.
In the customer sample (94083968_first.doc), a font change occurs at
column 64Nbelow the newline threshold. The next text character
after the font markup is in column 75, but since the previous
character is not a space, the newline is not triggered until column 79
is reached.

The results are different in 94083868_two.doc because the
component is the first on the page, so page−break markup is
included in the line. This changes line count so that the maximum
count of 79 has already been exceeded when the first character after
the font markup is to be output. Hence a new line is started.

By putting a space after a font change instead of before it, you can
prevent some words being broken, but there is no way to guarantee
that words do not get broken.

Newlines may legally occur almost anywhere. A single newline
character in a marked−up ASCII format file is not interpreted as
having any special significance when read by the ASCII loader. Any
post−processing of the output should ignore single newlines.

A forced line break is never preceded by a space (0x20)Nthat is, the
combination 0x20 0x0a may be treated as a soft return. 0x0a 0x0a is
end−of−component (or other delimiter), but 0x0a by itself may be
effectively ignored.

In Interleaf 6.1, you can use Lisp to control line−break values by
setting the maximum line length to a high value.

Quotation Procedures

Backslashes, not double quotes, must be used in graphics and chart
markup to preserve spaces between words.

Note

I�I

File Formats�Index−1

Italicized numbers refer to pages on which figures appear.

Symbols

, (comma)
as property and value separator, 1−7
in graphics objects markup, 4−2

@~attr, convention for negating (toggling) text in−
heritance, 2−47

@i*, convention for inline inheritance (all text prop−
erties), 2−47

@iproperty, convention for inherited text property,
2−47

@X, caps and small caps (text property), 2−50

+, inherit and increase operator, 2−47

−, inherit and decrease operator, 2−47

<...>, convention for commands, 1−4

<#xx> command, for special characters, 2−60

<|, ...> (page break command), 2−57–2−63

~, inherit and toggle operator, 2−47

A

a (arc), in arc (graphics objects) markup, 4−14

A4, defaults for, 2−2

Accented Characters, in Interleaf ASCII markup, 1−8

Arcs, graphics objects markup for, 4−12–4−32

ASCII Dumper, 1−2

ASCII Format
See also Interleaf ASCII Format
for files without markup, 1−11–1−14

ASCII Loader, 1−2, 1−13

Attributes, user−defined, 2−61

<Autonum, ...> Command, definition of, 2−39–2−63

<!Autonumber Stream, ...> Declaration
default values for, A−3
definition of, 2−18–2−63
order in declaration, 1−5

Autoreference, 2−40–2−63

B

b Record, in chart markup, 5−7

Bézier Objects, in graphics objects markup, 4−27

Binary Image
file structure of, 7−2, 7−4
raster data for, 7−4

Bitmap, markup for patterns, 2−15

Blanks
in Interleaf ASCII markup, 1−11
multiple blank lines, 1−11

Brackets, conventions for using in ASCII markup,
1−3–1−14

C

C Record, in chart markup, 5−11

Caret Position, Save ASCII commands and, 1−14

<Cell, ...> Command
default values for, A−5
definition of, 3−9–3−18

Character Mapping, in Interleaf ASCII markup,
1−13–1−14

Character Translation Table, 1−11

Index

Index

�I

Index−2�Interleaf 7

Charts
in Interleaf ASCII markup, 5−1
individual records for, 5−3–5−15
record structure of, 5−2–5−15
sample ASCII markup for, 5−13–5−15
unit of markup used, 5−2–5−15

<!Class Defaults, ...> Declaration
definition of, 2−19–2−63
order in declaration, 1−6

<!Class, ...> Declaration
component, default values for, A−3
duplication of names as error, 2−20
order in declaration, 1−6
properties of, component definition, 2−20–2−63

CMYK Color Model, 2−13

Color and Pattern Palettes, general format for,
2−13–2−63

<!Color Definitions, ...> Declaration
code numbers for, 2−14
default values for, A−5
definition of, 2−13–2−63
order in declaration, 1−6

Commands
definition for markup, 1−4
Force Justify, 2−53–2−63
Interleaf ASCII commands, 2−39–2−63

<!Comment, ...> Declaration, definition of,
2−38–2−63

Comments
not allowed in diagramming data, 1−7
within markup brackets, 1−7

<component, ...> Command, definition of,
2−42–2−63

Components
declaration for (Class), 2−20
master definitions for, 1−3

Conditional Content, ASCII markup for, 2−61–2−63

Contone Image, in Image markup, 6−1

ConvertktokOutline Object, graphics objects mark−
up for, 4−18–4−32

D

Dashes, within comment, 1−7

Data Records, in chart markup, 5−9

Declarations, definition for markup, 1−3

Default Values
document, A−2
for Interleaf ASCII markup, A−2
page, A−2

dflags, in chart markup, 5−5

<!Document, ...> Declaration
definition of, 2−4–2−63
order in declaration, 1−5

Documents, creating in ASCII format, 1−14

Dumper, 1−2

E

e (ellipsis), in ellipsis (graphics objects) markup, 4−11

E Record, in chart markup, 5−12

Edge and Fill Properties, in graphics objects markup,
4−6

Ellipses, graphics objects markup for, 4−11–4−32

Encapsulated PostScript Objects, markup for,
4−23–4−32

<!End Declarations> Declaration
definition of, 2−38–2−63
order in declaration, 1−6

<End Inline>, for inline components, 2−45

<End Sub>, for inline components, 2−45

<End Table> Command, in table markup, 3−11

<End Text> Command, in microdocument markup,
4−20

EPS Objects, graphics objects markup for, 4−23

Error Messages, 1−13
for diagrams, 4−6–4−32

Index

I�I

File Formats�Index−3

F

F Record, in chart markup, 5−10

f Record, in chart markup, 5−4

</F>, font command for reverting within compo−
nent, 2−52

<FB>, font command for bold, 2−53

<FBI>, font command for bold italic, 2−53

<FI>, font command for italic, 2−53

Field Specifications, flags, 4−4

File
ASCII file without markup, 1−11
in ASCII format, 1−14

File Type, extensions for files in, 1−12–1−14

<FJ>, force justify command for text, 2−53–2−63

Flags Field, in graphics objects markup, 4−3, 4−4–4−32

<Fn>, command for font change, 2−49

<!Font Definitions, ...> Declaration
definition of, 2−11–2−63
font size limits, 2−12
order in declaration, 1−5
procedure for font numbers, font numbers, D−4

Font Inheritance, in inline components, 2−46

Font Token, in inline component markup, 2−46

Fonts, new features for, D−6

Fonts and Font Attributes Commands, 2−49–2−63

Foreign Language Codes, for spelling and hyphen−
ation, 2−51

<Frame, ...> Command, 2−54–2−63
default values for, A−4

Frozen Composition, and Save ASCII commands,
1−14

G

g (group), in group (graphics object) markup, 4−9

G Record, in chart markup, 5−10

g Record, in chart markup, 5−6

Graphics Objects
definition of, 4−1
general format for markup, 4−2–4−32
layering within a frame, 4−4–4−32
object types, letters and version numbers for,

4−3–4−32

Groups, graphics objects markup for, 4−9–4−32

H

h Record, in chart markup, 5−7

Hard Return, 1−11

Hexadecimal Data Object, in Image markup, 6−9

Hidden = Yes, No, property in markup, 2−54

<HR>, command for hard return, 2−55

Hyphenation Points, Save ASCII commands and,
1−14

I

Icon, use in file type, 1−12

Identifiers, for graphics objects, 4−3

Images
binary format for

See also Binary Image
caution when working with, 7−1

overview, 6−1–6−16
pasting raster images into Interleaf documents,

7−4–7−14
raster data for, 6−7
sample Interleaf ASCII markup for, 6−1–6−16

<!Include Declarations, ...> Command, 2−55–2−63
overview, 8−2

<!Include, ...> Commands, 2−55–2−63
assembling a document with, 8−6–8−8
inserting frames with, 8−7–8−8
nested, permissible level of nesting in, 8−2
overview, 8−2
supplying a template with, 8−2–8−8
using pathnames with, 8−2

<Index, ...> Command, for index tokens, 2−56–2−63

Inheritance, for text and font properties, 2−46

Index

�I

Index−4�Interleaf 7

Inline Component Command, subcomponent,
2−45–2−63

Input
A−page markup unstable for input, 2−44
caution with profile settings, 2−27
Convert−to−Outline object, only for input, 4−18
</F> Command, for input only, 2−52
Hidden = Yes, No ignored by loader, 2−44, 2−55,

3−8
page and component margins, 2−8
page break commands, no effect on input, 2−58
page number values do not affect, 2−54

Interleaf ASCII Format
creating documents in, 1−14
definition of, iii

Interleaf Binary Format
definition of, iii
for image objects, 7−1–7−14

International Characters, in Interleaf ASCII markup,
1−8

J

j Record, in chart markup, 5−7

jr record, in chart markup, 5−7

K

Knots, in markup for splines (graphics objects), 4−15

L

L Record, in chart markup, 5−12

l record, in chart markup, 5−8

Language Codes, for spelling and hyphenation, 2−51

Line−Art Image, in Image markup, 6−1

Lines, graphics objects markup for, 4−8–4−32

Linked Images, in image markup, 6−8

lo Record, in chart markup, 5−8

Loader, 1−2

Locks, in graphics objects markup, 4−4

M

m Record, in chart markup, 5−7

Master Definitions, for components, 1−3

<!Master Diagramming Object, ...> Declaration,
order in declaration, 1−6

<!Master Frame, ...> Declaration
definition of, 2−31–2−63
order in declaration, 1−6

<!Master Row, ...> Declaration
default values for, A−5
definition of, 3−7–3−18

<!Master Table, ...> Declaration
default values for, A−4
definition of, 3−2–3−18
order in declaration, 1−6

Measurement, units of, in Interleaf ASCII markup,
1−10

Metric, metric options, 2−2

Microdocuments, markup for, 4−19–4−32

N
n (EPS object), in Encapsulated PostScript Object

(graphics objects) markup, 4−23

N (named graphics objects), in named graphics ob−
jects markup, 4−28

Named Graphics Objects
as new feature, D−3
in graphics objects markup, 4−28

Newlines, Fill property and, 2−19

No Border, 2−55

O
o (Convert−to−Outline object), in Convert−to−Outline

object (graphics objects) markup, 4−19

O Record, in chart markup, 5−12

Object Type, in graphics objects markup, 4−2

Object Version Number, in graphics objects markup,
4−2

Index

I�I

File Formats�Index−5

OLE Objects, in graphics objects markup, 4−25

<!OPS, ...> Declaration
definition of, 2−2–2−63
order in declaration, 1−5

Output
importance of Hidden property, 2−43
importance of translating font markup, D−4

P

p (poly), in poly (graphics objects) markup, 4−10

P Record, in chart markup, 5−11

p Record, in chart markup, 5−8

<Page Header, ...> Command, definition of,
2−58–2−63

<!Page Number Stream, ...> Declaration
as new feature, D−3
default values for, A−2
definition of, 2−2–2−63
order in declaration, 1−5

<!Page, ...> Declaration
definition of, 2−7–2−63
new features in, D−8
order in declaration, 1−5

Pattern Definitions, declaration for, 2−15–2−63

<!Pattern Definitions, ...> Declaration
code numbers for, 2−15
definition of, 2−15–2−63

Plotter Objects, markup for, 4−21–4−32

Poly, in graphics objects markup, 4−10–4−32

Prefix, markup for, 2−28

Progenitor Area, in image markup, 6−7

Property
conventions for values of, iv
default values for, overview, 1−4

Q

Quotation Marks, in Interleaf ASCII markup, 1−8

Quoting, conventions for, 1−8–1−14

R

r Record, in chart markup, 5−9

Raster Format, and linked images, 6−8

<Ref, ...> command, definition of, 2−40–2−63

<!Revision Tracking, ...> Declaration
definition of, 2−17–2−63
order in declaration, 1−6

<Row, ...> Command
default values for, A−5
definition of, 3−8–3−18

rsu (ridiculously small unit), definition of, 5−2

S

S (spline), in spline (graphics objects) markup, 4−16

Save ASCII Command, hyphenation changes and,
1−14

scaleflags, in chart markup, 5−3, 5−5

Serial Number, in image markup, 6−7

sflags, in chart markup, 5−6

<SP>, command for hard space, 2−59–2−63

Spaces, markup for, 2−59

Special Characters, 1−8
command for representing in markup, 2−60–2−63
in Interleaf ASCII markup, 1−8

Specifications for Interleaf ASCII Format, com−
mands, 2−39–2−63

Splines, graphics objects markup for, 4−15–4−32

<SR>, command for soft return, 2−55

T

T (microdocument), in microdocument (graphics ob−
jects) markup, 4−20

t (text string), in text string (graphics objects) mark−
up, 4−17

T Record, in chart markup, 5−11

Index

�I

Index−6�Interleaf 7

t Record, in chart markup, 5−4

<Tab, ...> Command, 2−59–2−63

<Table, ...> Command
default values for, A−4
definition of, 3−8–3−18

Tables, Interleaf ASCII markup for, sample of,
3−11–3−18

Templates, supplying with Include commands,
8−2–8−8

Text Strings
markup for, 4−17–4−32
quoting characters in, 4−18

U

Units of Measurement, in Interleaf ASCII markup,
1−10–1−14

User−Defined Attributes
each occurrence must be specified, 2−20
use in document markup, 2−61

V

V (plotter or vector−list object), in plotter (graphics
objects) markup, 4−21

v (vector), in line (graphics objects) markup, 4−8

v Record, in chart markup, 5−3

VectorkList Objects, markup for, 4−21–4−32

Version Numbers, for graphics objects, 4−3

Visibility, field for graphics objects, 4−6

W

W Record, in chart markup, 5−13

w Record, in chart markup, 5−7

X

x Record, in chart markup, 5−8

Y

y Record, in chart markup, 5−8

Z

z (Bézier object), in Bézier object (graphics objects)
markup, 4−27

z coordinate, in graphics objects, 4−2

Index

I�I

File Formats�Index−7

Symbols

@A, all small caps (text property), 2−50

@attribute, under Row cmd, 3−8

@attribute = value, under Cell cmd, 3−9

@B, subscript (text property), 2−50

@C, all caps, 2−50

@D, double underbar (text property), 2−50

@K, track kerning (text property), 2−50

@L, language for spelling/hypenation (text property),
2−50

@O, overbar (text property), 2−50

@P, pair kerning off (text property), 2−50

@R, revision bars (text property), 2−50

@S, strikethrough (text property), 2−50

@T, superscript (text property), 2−50

@U, underscore (text property), 2−50

@Z, color number, 2−50

A

A−Page
under Master Row decl, 3−7
under Master Table decl, 3−3

A−Page # Prefix, under Page Number Stream decl,
2−3

A−Page Numbering, under Page Number Stream decl,
2−3

A−Page Properties, under Component cmd, 2−44

A−Page Style, under Page Number Stream decl, 2−3

Alignment, under Class decl, 2−21

Allow Page Break After
under Class decl, 2−21
under Master Row decl, 3−7
under Master Table decl, 3−3

Allow Page Break After Hyphen, under Page decl,
2−7

Allow Page Break Before
under Class decl, 2−21
under Master Row decl, 3−7
under Master Table decl, 3−3

Allow Page Break Within
under Class decl, 2−21
under Master Row decl, 3−7
under Master Table decl, 3−3

ASCII Unit, under Document decl, 2−4

Auto # Stream, under Page Number Stream decl, 2−3

Auto Edit
under Cell cmd, 3−9
under Master Frame decl, 2−31

B

Balance Columns, under Page decl, 2−7

Baseline to Baseline, under Page decl, 2−7

Begin New Column
under Class decl, 2−21
under Master Row decl, 3−7
under Master Table decl, 3−3

Begin New Page
under Class decl, 2−21
under Master Row decl, 3−7
under Master Table, 3−3

Begin on Anchor Page, under Master Frame decl,
2−31

Bleed, under Page decl, 2−7

Border, under Master Row decl, 3−7

Bottom Border Visible, under Master Table decl, 3−3

Properties

Index

�I

Index−8�Interleaf 7

Bottom Border Weight, under Master Table decl, 3−3

Bottom Margin
under Class decl, 2−21
under Master Row decl, 3−7
under Master Table decl, 3−3
under <!OPS, ...> Declaration, 2−2
under Page decl, 2−7

C

Color, under Cell cmd, 3−9

Column N Left Ruling Visible, under Master Table
decl, 3−3

Column N Left Ruling Weight, under Master Table
decl, 3−3

Column N Top Ruling Visible, under Master Table
decl, 3−3

Column N Top Ruling Weight, under Master Table
decl, 3−3

Column N Width (fixed), under Master Table, 3−3

Column N Width (proportional), under Master Table
decl, 3−3

Columns, under Page decl, 2−7

Component Bar Width, under Document decl, 2−4

Composition, under Class decl, 2−21

Consecutive Hyphens, under Page decl, 2−7

Contents, under Class decl, 2−21

Count, under Index cmd, 2−56

D

Decimal Char, under Class decl, 2−21

Decimal Tab, under Class decl, 2−21

Default Page Stream Name, under Document decl,
2−4

Default Printer, under Document decl, 2−4

Depth at Page Break, under Page decl, 2−7

Depth No Page Break, under Page decl, 2−7

Diagram, under Master Frame decl, 2−31

Dictionary, under Index cmd, 2−56

Doc (Index Document Name), under Index cmd, 2−56

Double Sided, under Document decl, v, 2−4

E

End on Anchor Page, under Master Frame decl, 2−31

F

Facing Pages, under Document decl, 2−4

Feathering, under Page decl, 2−7

Fill
under Class Defaults decl, 2−19
under component cmd, 2−42

Final Output Device, under Document decl, 2−4

First Indent, under Class decl, 2−21

First Page, under Page decl, 2−7

Float Precision, under Document decl, 2−4

Font
under Class decl, 2−21
under component cmd, 2−42
under Master Row decl, 3−7

Font Unit, under Document decl, 2−4

Footer, under Master Row decl, 3−7

Footer Border Visible, under Master Table decl, 3−3

Footer Border Weight, under Master Table decl, 3−3

Frame Margin Stretch, under Page decl, 2−7

Frozen Number Streams, under Page decl, 2−7

G

Gutter, under Page decl, 2−7

H

Header, under Master Row decl, 3−7

Header Border Visible, under Master Table decl, 3−3

Index

I�I

File Formats�Index−9

Header Border Weight, under Master Table decl, 3−3

Header Page, under <!Document, ...> Declaration,
v, 2−4

Height
under Master Frame decl, 2−31
under Page decl, 2−7

Hidden
under component cmd, 2−42
under Row cmd, 3−8

Horizontal Alignment, under Master Frame decl,
2−31

Horizontal Reference, under Master Frame decl,
2−31

Hyphenation
under Class decl, 2−21
under Page decl, 2−7

I

Indent Count, under Class decl, 2−21

Inner Margin, under Page decl, 2−7

K

Kerning properties, under component cmd, 2−51

L

Left Border Visible, under Master Table decl, 3−3

Left Border Weight, under Master Table decl, 3−3

Left Margin
under Class decl, 2−21
under Master Table decl, 3−3
under Page decl, 2−7

Left Profile, under Class decl, 2−21

Left Ruling Color, under Cell cmd, 3−9

Left Ruling Visible, under Cell cmd, 3−9

Left Ruling Weight, under Cell cmd, 3−9

Left Tab, under Class decl, 2−21

Letterspace Max, under Class decl, 2−21

Letterspacing, under Class decl, 2−21

Line Spacing, under Class decl, 2−21

Line Spacing Unit, under Document decl, 2−4

M

Manual Sheet Feed, under Document decl, v, 2−4

Margin Shrink, under Page decl, 2−7

Margin Stretch, under Page decl, 2−7

Margins, under Page decl, 2−7

Max Feathering, under Page Number Stream decl,
2−7

Maximum Page #, under Page Number Stream decl,
2−3

Measurement Precision, under Document decl, 2−4

Measurement Unit, under Document decl, 2−4

N

Name
under Master Frame decl, 2−31
under Page Number Stream decl, 2−3

No Border, under Master Frame decl, 2−31

Not Selectable
under Cell cmd, 3−9
under Master Frame decl, 2−31

Numbered, under Master Frame decl, 2−31

Numeric Tab, under Class decl, 2−21

O

On Anchor Page, under Master Frame decl, 2−31

Orientation Inverted, under Document decl, 2−4

Orphan Control
under Class decl, 2−21
under Master Table decl, 3−3

Outer Margin, under Page decl, 2−7

Overlap, under Master Frame decl, 2−31

Index

�I

Index−10�Interleaf 7

P

Page # Prefix, under Page Number Stream decl, 2−3

Page # Prefix Two, under Page Number Stream decl,
2−3

Page # Stream Name, under Index cmd, 2−56

Page # Style, under Page Number Stream decl, 2−3

Pattern, under Cell cmd, 3−9

Placement, under Master Frame decl, 2−31

Points Precision, under Document decl, 2−4

Print Deletion Marks, under Document decl, 2−4

Print Rev Bars, under Document decl, v, 2−4

Print Strikes, under Document decl, 2−4

Print Underlines, under Document decl, 2−4

Profiling, under Class decl, 2−21

R

Read Only
under Cell cmd, 3−9
under component cmd, 2−42
under Master Row decl, 3−7
under Row Cmd, 3−8

Repeating, under Master Frame decl, 2−31

Revision Bar Placement, under Page decl, 2−7

Right Border Visible, under Master Table decl, 3−3

Right Border Weight, under Master Table decl, 3−3

Right Margin
under Class decl, 2−21
under Page decl, 2−7

Right Tab, under Class decl, 2−21

Row, under Master Table decl, 3−3

Rulings to Bottom, under Master Table decl, 3−3

S

Same Page, under Master Frame decl, 2−31

See, See Also, under Index cmd, 2−56

Shared Contents, under Master Frame decl, 2−31

Size Contents to Height, under Master Frame decl,
2−31

Size Contents to Width
under Cell cmd, 3−9
under Master Frame decl, 2−31

Sort, Sort String, under Index cmd, 2−56

Spot Color Separation, under Document decl, 2−4

Starting Page #, under Page Number Stream decl, 2−3

Straddle
under Class decl, 2−21
under Master Table decl, 3−3

Straddle (vertical), under Cell cmd, 3−9

Straddle N, under Cell cmd, 3−9

Style = Metric, under <!OPS, ... > Declaration, 2−2

Style Fun, Style Name, Page# Sep
Bottom Margin, under <!OPS, ...> Declaration,

2−2
Inner Margin, under <!OPS, ...> Declaration, 2−2
Left Margin, under <!OPS, ...> Declaration, 2−2
Outer Margin, under <!OPS, ...> Declaration, 2−2
Page Height, under <!OPS, ...>, 2−2
Page Width, under <!OPS, ...> Declaration, 2−2
Right Margin, under <!OPS, ...> Declaration, 2−2
Top Margin, under <!OPS, ...>, 2−2

Subcomponent, under component decl, 2−45

Superscript, under Master Frame decl, 2−31

T

Tab Origin, under Class decl, 2−21

Table Page Break Rulings, under Master Table decl,
3−3

To Named, under Index cmd, 2−56

To Next, under Index cmd, 2−56

TOC Doc Name, under Class decl, 2−21

TOC Page Stream, under Class decl, 2−21

Top Border Visible, under Master Table decl, 3−3

Top Border Weight, under Master Table decl, 3−3

Index

I�I

File Formats�Index−11

Top Margin
under Class decl, 2−21
under Master Row decl, 3−7
under Master Table Declaration, 3−3
under Page decl, 2−7

Top Ruling Color, under Cell cmd, 3−9

Top Ruling Visible, under Cell cmd, 3−9

Top Ruling Weight, under Cell cmd, 3−9

Track Kern Spaces, under Class decl, 2−21

Turned Pages, under Page decl, 2−7

Typeface, under Index cmd, 2−56

U

Underline at Descender, under Document decl, 2−4

V

Vert Just, under Page decl, 2−7

Vertical Alignment
under Cell cmd, 3−9
under Master Frame decl, 2−31

Vertical Margins, under Page decl, 2−7

Vertical Reference, under Master Frame, 2−31

W

Widow Control
under Class decl, 2−21
under Master Table decl, 3−3

Width
under Master Frame, 2−31
under Page decl, 2−7

Wordspace Max, under Class decl, 2−21

Wordspace Min, under Class declaration, 2−21

Wordspace Nom, under Class decl, 2−21

Wordspacing, under Class decl, 2−21

Z

Zoom, under Document decl, 2−4

Index

�I

Index−12�Interleaf 7

A

A−Page Numbering, declared under Page Number
Stream, 2−3

A−page prefixes, declared under Page Number
Stream declaration, 2−6

Angle bracket, as text character in Interleaf ASCII
markup, 1−7

C

Command names in markup, use of quotation marks,
1−9

Comments, not allowed in diagramming markup, 1−7

Component names, cannot be duplicated, 2−20

Components vs Frames, differences in Interleaf
ASCII markup, 2−32

Coordinates in Graphics Objects markup, number of
digits permissible, 4−8

E

End Table cmd, 3−11

End Text, required in microdocument markup, 4−20

F

Fill Property, special use of, 2−19

Fill Property for components, special use of, 2−43

<Fn> font tokens, do not accept text property inher−
itance, 2−47

<FO> font token, does not accept text property
markup, 2−52

Font inheritance
as a special case, 2−46
special constraints, 2−49

Font inheritance procedure, 2−29

Font number assignment procedure, D−4

Font Token, importance in inline component markup,
2−46

Frame width constraints, 2−36

Frames inside table cells, special procedures for, 3−10

K

Kerning, as text property of the font, 2−52

N

No Dictionary property, facilitates loading of large
files, 2−51

P

Page vs Microdocument Properties, 2−7

Q

Quotation Marks, inside quotation marks, 1−9

T

Tabs, cannot insert if alignment Centered or Right,
2−23

Special Cases

