

HOW TO FIX CORRUPT MULTITRANS XLIFF FILES

This is not an official document and is intended for support purposes only. This document assumes basic familiarity with XML syntax.

Recommended Tools
Notepad++ https://notepad-plus-plus.org/downloads/

 Once installed, also install the “XML Tools” plug-in via Plugins > Plugins Admin… (https://npp-user-manual.org/docs/plugins/#install-using-plugins-admin)

Liquid Studio (Free Community Edition) https://www.liquid-technologies.com/trial-download

 This software is not necessary but it will speed up the troubleshooting process.

Terminology used in this document
 Element – refers to an XML element. That is, everything between (and including) the opening and closing tag.

 Close off – add a closing tag after a corresponding opening tag.

 Segment & trans-unit – used somewhat interchangeably in this document, but strictly speaking a trans-unit (short for translation unit) encompasses both the

source text (source segment) and the target translation (target segment).

 Inline formatting – formatting (font size, emphasis, colour etc.) that is applied only to a specific selection of text.

Overview of the MultiTrans XLIFF schema
The MultiTrans XLIFF schema is approximately based on the OASIS Standard XLIFF 1.2 specification. The original OASIS specification can be found here:
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html
While the MultiTrans XLIFF schema is slightly different, this specification can still be used as a reference to familiarise yourself with the overall file structure. Custom

elements and attributes specific to MultiTrans are typically prefixed with mc:

https://notepad-plus-plus.org/downloads/
https://npp-user-manual.org/docs/plugins/#install-using-plugins-admin
https://www.liquid-technologies.com/trial-download
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html

The overall structure of a typical MultiTrans XLIFF file looks like this:

<?xml version="1.0" encoding="utf-8"?>

<xliff>

 <file>

 <header>

 <mc:skeleton></mc:skeleton>

 </header>

 <body>

 <!-- A group may contain one or many trans-units -->

 <group>

 <!-- A trans-unit represents a segment's source & target translation -->

 <trans-unit>

 <source>Bonjour</source>

 <target>Hello</target>

 </trans-unit>

 </group>

 </body>

 </file>

 <!-- There may be more than one file, e.g. when using the Merge Flow Machine Task -->

</xliff>
To summarise each part of this structure:

 Each XLIFF file has exactly one root <xliff> element.

 There may be one or many <file> elements containing one <header> and one <body> element. There will only be more than one <file> element if the XLIFF file was

created using the “MultiTrans Merge” Flow Machine Task.

 The <header> contains an <mc:skeleton> element which is used when re-constructing the document back into its native format.

 The <body> contains one or many <group> elements.

 Each <group> element contains one or more <trans-unit> elements.

 Each <trans-unit> must contain exactly one <source> and one <target> element. The source and target contains the text from the original source document and its

translation to the target language. These may contain just plain text, but often there will be additional tags to specify various formatting or layout options.

Trans-units in more detail
Aside from the mandatory <source> and <target> elements, a <trans-unit> may also contain many <alt-trans> (short for “alternative translation”) elements which are used

to track the changes made to each segment. Here is a simplified example:

<trans-unit extype="DOCX" id="57">

 <source xml:space="preserve">Please translate this sentence.</source>

 <target state="translated" xml:space="preserve">Veuillez traduire cette phrase.</target>

 <alt-trans alttranstype="previous-version" origin="1">

 <source xml:space="preserve">Please translate this sentence.</source>

 <target xml:space="preserve">Veuillez traduire ceci.</target>

 </alt-trans>

 <mc:props>

 <mc:prop mc:name="Created by" mc:type="STRING">Alice</mc:prop>

 <mc:prop mc:name="Created date" mc:type="DATE">20210101T090000Z</mc:prop>

 <mc:prop mc:name="Modified by" mc:type="STRING">Alice</mc:prop>

 <mc:prop mc:name="Modified date" mc:type="DATE">20210101T103000Z </mc:prop>

 </mc:props>

</trans-unit>
In this example there is one <alt-trans> element which contains its own <source> and <target> elements. Note that the alttranstype=”previous-version” attribute indicates

that this is a previous version of this trans-unit.

Other things to note about this example are:

 The <mc:props> element contains metadata about this particular trans-unit, such as who last modified it and when.

 There can be many <alt-trans> elements within the same <trans-unit>, each with their own child <source> and <target> elements, but there must only ever be one

<source> and one <target> that is a direct child of the <trans-unit> element.

Here’s an example where there is extra formatting information applied to the text in the segment:

<source xml:space="preserve">

 <g ctype="bold" id="65" mc:smlformat="Biu">Click here to search for information: </g>

 <bpt ctype="link" id="b66" rid="r66"><w:hyperlink r:id="rId7" w:history="1"></bpt>

 <g ctype="bold underlined x-mc-char-color x-mc-char-kern" id="67" mc:smlformat="BiU">https://duckduckgo.com</g>

 <ept id="e66" rid="r66" xml:ctype="link"></w:hyperlink></ept>

</source>

<target state="translated" xml:space="preserve">

 Cliquez ici pour rechercher des informations:

 <bpt ctype="link" id="b66" rid="r66"><w:hyperlink r:id="rId7" w:history="1"></bpt>

 https://duckduckgo.com/?kad=fr_FR

 <ept id="e66" rid="r66" xml:ctype="link"></w:hyperlink></ept>

</target>

The <g> element is a common tag used to apply inline formatting to the text that it surrounds. In the above example, the text that comes before the hyperlink has bold

formatting applied to it (ctype=”bold”) in the source element, but there is no formatting applied to the equivalent translation in the target segment because there are no

surrounding <g> tags.

Wherever there is a <bpt> element, there will also be a corresponding <ept> element somewhere after it. BPT and EPT stand for Begin Paired Tag and End Paired Tag

respectively and they are used to provide native code that the source format will understand. In the example above, these tags are used to provide <hyperlink> tags which

surround the URL in the text. When the target Word document is exported, these hyperlink tags are used to display the text https://duckduckgo.com/?kad=fr_FR as a

clickable link in Microsoft Word.

How to set up Liquid Studio for troubleshooting
When you first open Liquid Studio, go to Tools > Options > Editors > Large File Editor then change the A single line is longer than setting to the maximum value (8096KB). If

an XLIFF file is opened in the Large File Editor, you cannot use the validation features, so changing this option prevents this from happening:

Go to File > Open > File… and browse to the corrupt XLIFF file. Once open, go to Edit > Advanced > Format Document to make the XML more readable:

To set up validation, go to Tools > Schema used to validate XML:

In the list of XML Schemas, scroll down to the OASIS XML Localisation Interchange File Format (XLIFF) TC – Version 1.2 option and deselect it:

Select the Add Schema File button and browse to the xliff-core-1_2-transitional.xsd XML schema file. You should then see the schema file listed under Additional Schemas

at the top of the list:

Close this window and you’ll see validation errors appear in the Error List at the bottom of the screen. Double click an error to go to the corresponding line in the file:

Once you’re done fixing an XLIFF file in Liquid Studio, you will need to remove the extra whitespace created by using the Format Document option. See step 5 of the next

section below for instructions on how to do this using Notepad++.

Overview of how to fix files without Liquid Studio (using just Notepad++)
If for some reason you are unable to use Liquid Studio, here is how you can use Notepad++ to fix an XLIFF file:

1. Open the corrupt XLIFF file in the MultiTrans XLIFF Editor and make a note of the error that appears:

2. Open the XLIFF file in Notepad++ then select Plugins > XML Tools > Pretty Print (or press Ctrl+Alt+Shift+B) to make the XML more readable:

3. The example message from step 1 contains <trans-unit id=’2:120’> which refers to the <trans-unit> element with an ID of 120 that is the 2nd <trans-unit> element

within its parent <group> element. To find this faulty <trans-unit> element, press Ctrl+F in Notepad++ and search for id=”120”:

4. Fix the problem with this <trans-unit>, save the file then open it again in the MultiTrans XLIFF Editor. Repeat steps 1 and 3 until the XLIFF opens without any issues.

5. Once the XLIFF file has no errors, make sure to select Plugins > XML Tools > Linearize XML (or press Ctrl+Alt+Shift+L) to remove the extra whitespace:

Common Errors
Missing or misplaced closing tags
The following error messages typically indicate that an XML element has not been closed properly:

 The element ‘target’ in namespace ‘urn:oasis:names:tc:xliff:document:1.2’ has invalid child element ‘alt-trans’…

 The element ‘group’ in namespace ‘urn:oasis:names:tc:xliff:document:1.2’ has invalid child element ‘group’…

The example below shows how to fix both of these errors. The key is to make sure that closing tags are where they should be:

Duplicate / Erroneous <g> inline formatting tags
<g> elements can be long and contain several attributes, so you may wish to enable Word Wrap when dealing with these. In Liquid Studio this is done via Tools > Options >

Editors > Default Settings > Word Wrap (important: turn this off when finished, otherwise you may struggle to open subsequent files if they’re particularly large). In

Notepad++ this is done via View > Word Wrap.

Here are a few simple tips to keep in mind when correcting <g> elements:

 They should not contain other XML elements, including other <g> tags.

 They should also only appear within a <source> or <target> element.

 They can be self-closing (i.e. <g /> rather than <g></g>).

 The <alt-trans> elements containing previous translations will typically remain correctly formatted, so you can usually use their corresponding <source> and

<target> elements as a reference to see roughly how the main <source> and <target> segments should be formatted.

Example 1 – A self-closing <g> element erroneously placed outside of a <target> element. In this case, it can either be deleted or moved before the closing </target> tag:

Example 2 – A typical problem where an opening <g> tag is placed where there should be a closing </g> tag, causing multiple other issues.

‘body’ start tag does not match the end tag of ‘file’
This likely means that there is a closing </body> tag missing before a closing </file> tag, as in this example:

<alt-trans> should have at least one <target> element.
The segment history of a segment is missing a <source> or <target> element. For example, this <alt-trans> element only contains a <source> element and the <target>

element is missing:

<alt-trans alttranstype="previous-version" origin="1" mc:user="SYSTEM">

 <source xml:space="preserve" />

 <!-- No target element! -->

</alt-trans>

	Recommended Tools
	Terminology used in this document
	Overview of the MultiTrans XLIFF schema
	Trans-units in more detail
	How to set up Liquid Studio for troubleshooting
	Overview of how to fix files without Liquid Studio (using just Notepad++)
	Common Errors
	Missing or misplaced closing tags
	Duplicate / Erroneous <g> inline formatting tags
	‘body’ start tag does not match the end tag of ‘file’
	<alt-trans> should have at least one <target> element.

